Revision 0b8e627b6bdbcd902f1d94124e8f8e97be836fc1 (click the page title to view the current version)
Front Page
Previous Ateliers:
2015 (Bordeaux), 2016 (Grenoble), 2017 (Lyon) 2017b (Clermont-Ferrand) 2017c (Oujda) 2018 (Besançon) 2018b (Roma) 2019 (Bordeaux) 2019b (Roma) 2020 (Grenoble) 2021b (Oujda) 2022 (Besançon) 2023 (CIRM) 2024 (Lyon) 2024b (Roma) 2025 (Orsay) LIBPARI2025 (Bordeaux)
Welcome to Atelier PARI/GP 2026 (Bordeaux)
Topics
- Eric : local units mod p and unramified extensions
- Haetham : snf forms etc.
- Bill : helping around
- Salma : doctesting
- Rayane : presentations of coverings
- Safia : doctesting
- Daniel : snf stuff
- Karim :
- Nicolas B.: congruences between modular forms
- Zakariae : Eisenstein series attached to quadratic fields
- Alina : factorisation of Hecke L-functions in terms of Dirichlet L-functions
- Henri : helping around
- Mateo : computing coefficients of generating series
- Alejandro : Voronoi complex
- Vincent :
- Philippe :
- Tim : trying things, reading doc
- Andreas : scheme bindings for the pari library
- Fabrice : class group computations
- Sam : 3 and 5 descent
- Jean :
- Vasily :
- Pengju : charpoly of Frobenius of varieties
- David : helping, doctesting
- Tao : reading tutorials
- Gabriel : Voronoi’s algorithm for Hermitian forms
- Rob : doctesting, p-adic polylogs
- Fredrik :
- Kiran : joining others, hypergeometric motives
- Bernard :
- Antoine : polynomial factorisation
- Pierre L. :
- Afonso :
- Nicolas M.: algebraic curves, looking for volunteers to help
- Thibaut : doctesting
- Pascal :
- Pierre M. : class field theory, p-adic fields
- Aurel : helping around
- Baptiste : modular forms, congruences, class field theory
- Alice : S-units with norm relations
- Bernadette: doctesting, reading
- Léo :
- Fotios : doctesting, action on additive structure of ideals
- Damien : experiments on formulas for elliptic curves
- Marine : doctesting
- Denis :
- Julien : elliptic curves over finite fields and quaternion algebras
- Giacomo :
- Alexander : second cohomology for polycyclic groups in GAP
- Wenwen : Verify the correctness of reduction between RLWE and MP-LWE
