Denis Simon on Wed, 15 Nov 2023 23:15:15 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question on ternary quadratic form |
Hi Hermann, More generally, if you have a quadratic form that you suspect to be highly reducible, you shoud try to reduce it with qflllgram: ? M=[1,0,0;0,5,28;0,28,157]; ? G=qflllgram(M) %2 = [1 0 0] [0 -6 -11] [0 1 2] ? G~*M*G %3 = [1 0 0] [0 1 0] [0 0 1] In your situation, you can do the same thing with the 2x2 block [5,28;28,157]. Cheers, Denis SIMON. ----- Mail original ----- > De: "Bill Allombert" <Bill.Allombert@math.u-bordeaux.fr> > À: "pari-users" <pari-users@pari.math.u-bordeaux.fr> > Envoyé: Mercredi 15 Novembre 2023 23:00:39 > Objet: Re: Question on ternary quadratic form > On Wed, Nov 15, 2023 at 10:28:25PM +0100, hermann@stamm-wilbrandt.de wrote: >> After two modifications I got this ternary quadratic form: >> >> ? Qt >> >> [1 0 0] >> >> [0 5 28] >> >> [0 28 157] >> >> ? >> >> I know it can be transformed to ternary identity form. > > You can use qfisom (if the form is positive definite): > > ? M=[1,0,0;0,5,28;0,28,157]; > ? qfisom(M,matid(3)) > %17 = > [0 1 6] > > [0 -2 -11] > > [1 0 0] > > Of course, if you look for solution of the form > 1 0 0 > 0 a b > 0 c d > > Then you should do > ? qfbredsl2(Qfb(5,28+28,157)) > %20 = [Qfb(1, 0, 1), [-6, 11; 1, -2]] > > which will be much faster. > > Cheers, > Bill.