Markus Grassl on Wed, 15 Nov 2023 23:09:17 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question on ternary quadratic form
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question on ternary quadratic form
- From: Markus Grassl <markus.grassl@ug.edu.pl>
- Date: Wed, 15 Nov 2023 23:09:07 +0100
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=ug.edu.pl; dmarc=pass action=none header.from=ug.edu.pl; dkim=pass header.d=ug.edu.pl; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=JDyIArVdvqCqS4OOIMWdPwKsO7kmTz2Q2Qgi5lsj5Xw=; b=Wfl0L76oQbkCOzqYeTLuiQjRDbw13RLQQa3cMr16dKV3VRnhw1SBx0ssT3X+IhVE4yBtKATiWcEVzFxwukTmkuBX7ruv0C1IQNZA6Sa0COGaKJYYJ3fqt9HdrxcTLasYPUfgzpTaPTkNmtYGrwJdrE6D58WYDkg/xSV2XlncsvmD9x0otxxlrOrF8hPUJTz1KHKWnb5K/GjUzPYy1rfR+0s3DhMS4oL4lXi+pq4hty2LWXioRlludmtz05vGmLoiQsHSCpQH1TYZVcYcWqflCiMjgE1K5JtN3qbxF7F80E6Mhv5kWXTwPVFI6tukNt4fKWpivsc0xyOOf4NPjBrkHA==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=j5eYL8pBAwKISPAEG7pg/K5MiKxbxVzw5fQ36G4Rfp0tAX86KduEOTIRP288GA1DEGrFQqDltLto+oCLWfpCgUL9F6rgfz8efEUfdSOfuHHndXc8dBVEQnd0Boq0UiIKilgXZ8cQaMBDL+fyP8B0u6TvbsPbTSrtrhwbEf9RenuC1zUlPeA3Q+ckgGb5S+UPvQFIsFVxtZZWLrKlkUPH5/jPPGeaJzcnrFpPsjXdRoV/IurEdy8uVNYGOAvppSO4Tk6sd6fKimU57ncF4T9ptXvY8wqbs0HO7QPp1flTyRhFn7wieNfZSZ47JwAfBiiulatR1S+V7J4RfzUXJ3GrGw==
- Authentication-results: dkim=none (message not signed) header.d=none;dmarc=none action=none header.from=ug.edu.pl;
- Delivery-date: Wed, 15 Nov 2023 23:09:17 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=studugedu.onmicrosoft.com; s=selector2-studugedu-onmicrosoft-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=JDyIArVdvqCqS4OOIMWdPwKsO7kmTz2Q2Qgi5lsj5Xw=; b=jxylg4rzqh87jKHe1Lfe9Lv+IMQBxEAkq5ZkYaBIrc/RCxDvIGIIcDP4QD6aFK89x/DOHm5Ld/56CA0qHqiP/W08ZSlFdx3XmxfrRzAgL6Ct+ZdLwz4rlgvfFrehohG32ue08Zgrcv56Wjf8o8y3ve+0GI6gU+mw8GldMTOETT0=
- In-reply-to: <9bbdc86703960aaf2b5421cbf58e6b65@stamm-wilbrandt.de>
- Organization: International Centre for Theory of Quantum Technologies
- References: <9bbdc86703960aaf2b5421cbf58e6b65@stamm-wilbrandt.de>
- User-agent: Mozilla Thunderbird
It took me a bit longer to find the corresponding functions in Pari -
slightly different from Bill's solution:
? G=[1, 0, 0; 0, 5, 28; 0, 28, 157]
%1 =
[1 0 0]
[0 5 28]
[0 28 157]
? qflllgram(G)
%2 =
[1 0 0]
[0 -6 -11]
[0 1 2]
I'm not sure whether this works for all cases.
More generally, given a quadratic form, one can look for short vectors
in the lattice with the give Gram matrix whose length is a square.
Those vectors can be used in a Gram-Schmidt like procedure, and the
normalisation of the vectors does not introduce a square root if the the
length of the vectors is a square.
Markus
Am 15/11/2023 um 22:28 schrieb hermann@stamm-wilbrandt.de:
Centrum Informatyczne UG: Ta wiadomość e-mail pochodzi spoza Uczelni
Fahrenheita. Zachowaj ostrożność. Nie klikaj linków ani nie otwieraj
załączników, chyba że rozpoznajesz nadawcę i wiesz, że zawartość jest
bezpieczna.
________________________________
UG IT Center: This email comes from outside the Fahrenheit
Universities. Use caution. Do not click links or open attachments
unless you recognize the sender and know that the content is safe.
After two modifications I got this ternary quadratic form:
? Qt
[1 0 0]
[0 5 28]
[0 28 157]
?
I know it can be transformed to ternary identity form.
In order to determine the transformation I define:
? X
[1 0 0]
[0 a b]
[0 c d]
?
And get this:
? X~*Qt*X
[1 0
0]
[0 5*a^2 + 56*c*a + 157*c^2 (5*b + 28*d)*a + (28*c*b +
157*d*c)]
[0 (5*b + 28*d)*a + (28*c*b + 157*d*c) 5*b^2 + 56*d*b +
157*d^2]
?
Now I switch to wolframscript and determine a solution for the three
equations:
In[4]:= FindInstance[5*a^2 + 56*c*a + 157*c^2==1&&5*b^2 + 56*d*b +
157*d^2==1&&(
5*b + 28*d)*a + (28*c*b + 157*d*c)==0,{a,b,c,d},Integers]
Out[4]= {{a -> -6, b -> -11, c -> 1, d -> 2}}
In[5]:=
With that I define matrix Y:
? Y
[1 0 0]
[0 -6 -11]
[0 1 2]
?
And really Y is transformation matrix to ternary quadratic form:
? Y~*Qt*Y
[1 0 0]
[0 1 0]
[0 0 1]
?
How can I determine integer {a,b,c,d} solutions in PARI/GP without using
wolframscript?
Regards,
Hermann.