Bill Allombert on Wed, 15 Nov 2023 23:00:46 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question on ternary quadratic form
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question on ternary quadratic form
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 15 Nov 2023 23:00:39 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1700085641; c=relaxed/relaxed; bh=2nmPW/01SIl8D4XmXfM/SozInSYibgCXbGcYca+xVRc=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=jtAedMp3saJKvfAh6DpByRDNqZ9K7wn0njQGd6idaqrJ1k/afh204jASiyh2B/YfCRmzIsC6YYwHK3uuGD8HEygH20FVwYYpxrIcgOfGs3Qzz49RJ0Rd7wbZE8pEyg0LYSWv89qGXkepXhfimpFAIaPfw84KR0qI0hmUdylt8jTIAZXcltCVhlyWvOR6WKfQycUsp+4l8zn2BCFNSclkUy/z4J6d1YFnh0A8d8Ii8X5fnhknkj4pswOOAReQSKXU6pnmdH6BxG4vxsq+wlAj1AFRK7KMMBOf1cCS7GmwdVAwnT85GBijasUeCB85H+ewQWx/hrHREUJM8FE+1aVJ2DPDzgXrcsns14fmcCNLHIe5P9CGqFqEWO3o7RjRtL6M9YyrNMbTelORg8LuQpJgoT0yDuMqFwCbGwCFqkq4GsK6ICo3crq0KtCb09pNScVK4JFmprovKLrVxWAnNGD7WtrDevISgPN0WY1fhIWWXTWs7f2JlFoYGHOL0oNh6O9X1KXokhKWB2vS0YGRM0J1W/jhoTV+sEeeOQj9jT8czObKbUqytn+pV9ForC4PKijUezv8gw3VzSWwUwPC+npSEE5G4tudKy/o//Ym22b1jiM0oBD77D/nQjYt9CqOlbwcloWjyVdEG3VuVOKf39rhvkcM91XttRi3DFe5Dcy2pHw=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1700085641; cv=none; b=oV891bbF9x9jke5DJXuKKZr088zoxRAag5F4v0asr8YY6mDk+KAm7qGAZyWwLlJe55/CktJuc5cu5jts4mZQUQOyL0V4Umo/uWKyX/RRttMKfhKycCAM0qMJ2SSyGXCrh82LhpM0noxH8yMiiTR+Pj5DN30pV7vGzo2UwaECBbWmmANInKYihwCseN4OU8oajvFKm0lUMjqpclMc7XzeqCnBbJw+wvMgEsWU18pJlSjHy1fTkYR0VYtSyEtoe3nOgf6VgUd1FkHmCJpjv3HoJmy0eP1VQ/BwWu/qn8exakWrkWmivv2+sQlxi87/VMeRzPRWnKf2Sbkw841LJUT3Upmx1NfnSAn4PZFy6o0wduECdk5WNkWcHRLo3G0TR5iRVZVwlt7Hhq1dyVHC07XoL372s2epLvxh/9pHHZbQFwE4+kkJCOu512PXC4wUtzmIg+wj0tKI7f34oaKfm0yPscAt+vl0sclWs4mAgOLCiDIPRXq2Df3rSbLzJOPf5nDmiUZur95xKTgYjUc3sBkl0VCVsvl480N9cpMOLHj4ZU7dBFh8K6GaAGPkjuRNvYD6joBbxdQQkCaaEx+HXXsbo4v+H+lHW8zVx3x0IWkyK6MietQx3gC9wLZliW5b8R3MyIpbVoxSkKWticZjLniMqkj5vxkMZL5Qj8ey7stUNjI=
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 15 Nov 2023 23:00:46 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1700085641; bh=2nmPW/01SIl8D4XmXfM/SozInSYibgCXbGcYca+xVRc=; h=Date:From:To:Subject:References:In-Reply-To:From; b=XrXBfZSfQq+NnVx1UV37/e+tsfGMuX7Gf/UAc54kUK9yPtRq3VEJvPLVrsam5tQej c+e/SmQFCzIMSZuwADBtC/93pJhHnfchLYk+ymqA2GqmF9IMqKknkEMlSIxYCQl1eI X4ZNN54gspye27R4sOpKdz3qB8JGQTsyZa51qqZOJNjYUql1nDdBzU7bzCBn4Tr+vY pV+uaw/jQxV3CWSUgJg+gly/Hne9fl7Dkb8CqXG9eeLXFhALO1uDd5zNqkm0ScPB8l VAzE1I+u6fynYJJC6J3FIczOYbqrSWaMEFk5gn0bzQA/Ckho6V/404qAqPq+bn7P4t lHLgE8dAWE+MWwiP/6ppds+v5r7gaz7pHiR4tHrB3j5JngozqIcOOopCdshcVeqybk I+UVpbqcSxbUkyVNsjfwEvkpk0CcjI/v0KvQyIomXxMgPmCI5/2M4VvATa+rYUKSZa k5BPZuwv4BH7mL+4S6KAwj0ywtQb1urI5qY9IYMDi+GkALsrmo/YVaekSqaCiC/Qu5 XIVb1QovYUwiiTRbIW9/dTCVBA0KF03C2J8Pd66imY+Oq6xoie9tZcVIkHYbpRHe5Y cCLMiL64gopNTI05pPc04XKuVODAqaxt/URRgLZ+X5qql2oM8JiTzhkPF+aaN+R5A2 SqBwt/L6tZNpcmc5IGzkWwq4=
- In-reply-to: <9bbdc86703960aaf2b5421cbf58e6b65@stamm-wilbrandt.de>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <9bbdc86703960aaf2b5421cbf58e6b65@stamm-wilbrandt.de>
On Wed, Nov 15, 2023 at 10:28:25PM +0100, hermann@stamm-wilbrandt.de wrote:
> After two modifications I got this ternary quadratic form:
>
> ? Qt
>
> [1 0 0]
>
> [0 5 28]
>
> [0 28 157]
>
> ?
>
> I know it can be transformed to ternary identity form.
You can use qfisom (if the form is positive definite):
? M=[1,0,0;0,5,28;0,28,157];
? qfisom(M,matid(3))
%17 =
[0 1 6]
[0 -2 -11]
[1 0 0]
Of course, if you look for solution of the form
1 0 0
0 a b
0 c d
Then you should do
? qfbredsl2(Qfb(5,28+28,157))
%20 = [Qfb(1, 0, 1), [-6, 11; 1, -2]]
which will be much faster.
Cheers,
Bill.