Bill Allombert on Mon, 17 Apr 2023 11:28:10 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Find an invertible integer matrix that satisfies given conditions.
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Find an invertible integer matrix that satisfies given conditions.
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 17 Apr 2023 11:26:53 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1681723605; c=relaxed/relaxed; bh=qcYe76yuOA8u7ngUkC+UVpOZuEpALw3oa4r7OiJTz3E=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=Is5lst0bv5U4YFpBfGBVe2vTq21PlCxsn8p8LEJPQuzyxS0wtKirRGCuY8g/xOHDwx8D9H8JzPRih9yhdYJ7MzM1rbnYU0HPf/8JhHZn/unSOZqedYj8h4Pa2A34QiSgBKm+Bm5L6qWliAZ6KfKhhOKS4QFw2OqtwavXc3SVBt3O+l1FG4p1c2FMMLnvzeWdnl8pHJmbht3j45FeYUMFF5st+CklLftQJ4pZ9szL6e5F9eF2p8Jq/6FA7lmvjFQXqcPtmhCVVaMpulmt8pL+zEX54p7pJefdla+ByzC31NwsbgEPWndi8i+Sj8j03zgVnYAKpdd45vJKXu7UZNo78JPwQ4gBfEjiimUe4+RZzjtmCdxe2lW2okU2vxxdUvAjT8jlaP60F2pKCVRI9RtO5JJudKgAIR/3HpgQKjf31t18tbjtiOOcqkZycS1Ld7NSfmhUjHGsDW1XT8JKfryGuKwFY+7RKquZIAwFcBtV5M9+pHRHxh+p7r6p/NkAcEPHZpeHOz+HJFCja26nUpl2870QkCJd+7SxU6/6OKiG+NkAJhp6LqaDpMHlWmROjx2nxe2hhzKIf1qGDRm1MWjZ/VDPnFsQJ844DPvXie2K+pdvJYaFqssnKPjCekamKjAj9w0I18m5mp8nWu4ceCXYUL4xbzQ8QS9d1K/H5KQ+A14=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1681723605; cv=none; b=HqQag1PwM75gwLbs9mydP39oxSNFjwNGnRK0PzqII0usowF8d6Pfo7Ml9eLDbtlsYy3nhN5lVyFaR0H0/ObuBqxlAt8rH7obCsDt4o2gBy55m5EAcaGTI4TT0aEmz0KKUvqyH3ILfCgphvu81v4aAsQMGTwV/zVBbRKNnzplmz92JlYaC6irhLyqq8qcXwGg9H297OIed2MOQq2lzADFOnAfei4x9ejJY9TlSyAgNomVIKy59x18gECx49188BFWbXI5mG4Uwk1RwCSfrjwf63izCJAxciqKO2Q47vwJwKeV5gzDuI2BrLRSEFZuCdRTJ1nEZVIadCdl3LHtUHUDIyFAwouiLCQANSzzTfhTMP9QWG2Oj8YMNZLFZmxwLckt0rqOcejmf25mK1SdLmJqktakuImcrcGhCOpTfMSv5oH74cVhaHSZErtLgHqM9p6FQR8UQ4aQuaupl/lUmuFlPN4EA/orkQm/pdercOLUOBEtQSY3GsZIaMcan1l6DNlD7wN/tj6tkcUeSmfbRtU8FOGDHLZ3t+ZwyaqC+K+tAU3XcDAtBbh463Gkkz8FOMHgGo7MY4f/jQ5UWCeCQNJ5OVXD8ejLJV69xnmoSXbx3YXPQ/BtcrMVoaoES8WJEXuGETInFWDAGhSHy5vUv3ndmGSFHv6db7zYYPBDazLDBK8=
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 17 Apr 2023 11:28:10 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1681723605; bh=qcYe76yuOA8u7ngUkC+UVpOZuEpALw3oa4r7OiJTz3E=; h=Date:From:To:Subject:References:In-Reply-To:From; b=puJtDk6vHB9geuIq5f35UYVWO70AHCtLu744EIigwh49kLw5JervbHFNezWV/j9Te 1AWWWNycEt0L4ZvIbaRbwiRfIf1wusRhqeLuUujC31lj0QUA+7+J2hEZPgXkfjuA2Q Vvj7Tj7EvwhJqAlLPMtW6E+E3vhFpncPFAlDtWIJ9TXDunDJGG6rYTmVjRIT0QG5mX HIN8EOhGXZV8AyDy0tLwWHafkXhZdLTafnVoMC56SrcKW54H6jWw9z1M99+0Pwaa8J S0D10nmcxmNee7FpB0y8oZCE5AO1RyX57TVk7esqIgFBddXEy3coHHUkldVrPA50vX wfw4pZ4BPJJ+IYsPOZJvs++FtVMC6ybhjYq8uXKiIrRLbJf/q7sP9UlvV0yJbdm6ms Z0S0y7m6hRzfoB75LdHbfqfEGJ0Tt50nbmlXcU3qZ7H4ylDVLV4ZN0SKyrUetm4Go5 DsGYlqjF8Sp93weoZZw1d/SMFi6KHuh6JrbdbQcVwikG/FTxFCyNkSpOuQ+dJ0WAmw +H2uKmFHDDBn0jgyizlEDxXSMH1cZc2K+J575y64wT8NWIWpwTTOVo3L5a3WLK6Ymz MsZcWnR30OQcHmBMF2Uz1luPGq8eF4l1qbNxbsBRQHKEoxhO+FpAD+jkW5aH1bv4Ci fHb2sn8eh6ax1mpAAoUU7Edc=
- In-reply-to: <CAGP6POKy2yagzR692Vrp8c_wxcOPpgQJL_DPhRpFb3HFZDGEOA@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAGP6POK-_rePogmmcNvqO=s9tgdHWKMtyyg6UcwZMd2Uc19xHQ@mail.gmail.com> <CANXmBjyyZijGpJEeuY-Dx0VYRMi+bd=Q6a+yDe5s4LrzkaAdCQ@mail.gmail.com> <CANXmBjwYk65_C4VU6Ecz6LmFrD8r44=Mbd5kGfPpyZou02P7uw@mail.gmail.com> <9781d7e9-25df-6bac-a791-60c5b2e4d33f@normalesup.org> <ZDZ7OxAI/dKf4w5u@seventeen> <CAGP6POKy2yagzR692Vrp8c_wxcOPpgQJL_DPhRpFb3HFZDGEOA@mail.gmail.com>
On Wed, Apr 12, 2023 at 09:00:00PM +0800, Hongyi Zhao wrote:
> > The difficult part is obviously 3).
> > For n=2, the Diophantine equation is a binary quadratic form, so can be solved by PARI.
> > Hofmann shows that solving the equation can be reduced to solve a set of
> > norm equations in orders of number fields.
>
> I am very grateful to Bill Allombert and Aurel Page for providing me
> with valuable information and algorithm implementations.
>
> Based on the clues here, I checked the works done by Tommy Hofmann
> [1], and it seems that there are no publically available
> implementations of his method, such as in open source codes, like GAP
> or PARI/GP. So, I'm still not sure if it's possible to implement his
> algorithms based on open source tools solely, and then use them as a
> starting point to do the further study.
Well, in some case, this can be solved using the GP functions bnfisintnorm
or bnfunits.
Cheers,
Bill