Bill Allombert on Sat, 15 Apr 2023 23:29:51 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to compute modulo a complex ?
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: How to compute modulo a complex ?
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sat, 15 Apr 2023 23:28:12 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1681594084; c=relaxed/relaxed; bh=YejKT3dov/XzbERFmHZsoN0L2YhHEfZjAilQ1+xB0BU=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=Pst5Xe4on2YHKo3VpLBvoaYKJFjqrP6O/kjRKvymg8r8D6sDEFwetCBxSuPpwZNOsnzlv+JOpFCYr/KcPo58uATET6XK5mO/05k2tHtmCrsb0MmWK1pQqd92OezLz5wOmABvliNimVRA/qbEO5fd0TSLIVVJBLG4TT2S9bBvaHVV4Y5cf23kZeh7rrGjzzrHAVSFuthT2iIqhTSCMEktZEbVePpgJetdtMQlZLJ3oBRwAaHfPmHpSqBLg27PncYtic5CB1MvElOihZDjRhQVK+6xochWgJsesLDee4ZKtSsmjxY1WqPH3KdXMUk883MWbk46PxgD5CFN31ukyx4Q4eAfh+0vw20DfmYFDi6nDdQDExp6A6lu4/SBcr3FvCONwmx6xw7FRajXz+QWBM40TyShLvY/xW/hEP1bebZYNclyKxdnsIw8F8Q/3HL+n/p1lpjD6/bpXCYHndmdhLyAnm3wSzquMDX05LaMVX2eWXD5nGBJwcE72Ozpm8bEdRHle4JrfAYXmnIhnwGJAZ4PVkUS59L6zoiV0K+1v3LxLZaH0wiv1pwvSNiEjsugEQbsJ3me8A8XCrxrssSNLDLaL2byjwAvw/8h4HwL+qW0u3hNirbS3Zgl6jREpmrCC6hBOyFN3UdyNmkxjdmX2Qo/Vn0Vx4lz92OXACE10p782h8=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1681594084; cv=none; b=VjwEk66lXGvp32ObFz2caWi/YDQaL9nUDWw6K1gM0jcWD8TEJhrNdIuKv3MDtS0xpX1XZGtWzUoCy/r7lo2lyBfpYn4ed+nTsEY4UsKdvR3Hgf+QsXSaveEkHRxqG9DYwTPfWXEqEMO5VeFSykS29yTYeTaFCgo2n+k1WIbabuI3iR1wSzV9XFoseFBPGJkl/G6Yy/owrp5jMa5cCp7+Os4xhHZ5bDN9QPJ4y4NclOf3kQLMji93K6ixiMzJwjUlNC3sd5xxZFwPzpjeugjakLipEQUMfOYG2JTVI/qkXKb8TRUkMLJubH72IUQe+gcyG2t2O/gEYefHW6Psd8/gEeKVu9H5w1rEp6S1mgww4weyPvqJnD6coHGnB3FPDrE5+Mcqy7TxoII1b+04YBbvOE6k5zfhPFiPuc4pW6d0YbTSVrbrOUvlO4h1DsYR9VQO73vt3GS5purPhVof7HVSGRO+o+qz03ZibA859QV7ARBjGh/OyPIhYWA17/PDfYC3v1iPz2bKCUCFR5prRrzNzNHuxvHQCI9jANNxPyBy3PCYm8+HfGyngHR7ewnomNfgV8T99LkxUDVem2FNG5FVsngao8Np6MknSTvs4g9nTPhaOHFcQ3OJyV/y9C0Us8VThlPE3pDHR0fVEDcgNhPjHtZXADl0eREvOX+D32t3iYA=
- Authentication-results: smail; arc=none
- Delivery-date: Sat, 15 Apr 2023 23:29:51 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1681594084; bh=YejKT3dov/XzbERFmHZsoN0L2YhHEfZjAilQ1+xB0BU=; h=Date:From:To:Subject:References:In-Reply-To:From; b=ZPgP+SGoa2gNfG99iVh6mKgVbTlxfa4ubKlYepE7JS6+D9gBrPBxIyvyePkZWX2jm E+btJQVgW/RtgBQ1RpQT2Aj256TFZRmlzjxJfgxVyt8YhSrqu+knM9+1KYV4nx/YJO vM/DWWzUlaVDIVKgePO9jkv2SwacvPxmcaxeihl7VJvH/rvLyFQaCT7jbRyaPYBNU7 Bcqbs3QC0IMzL0MzE5b8G6R5ILlOoa3Xxc+Nn+sFkg/q3c50r/xEgnkgUrbxgZcBey nqDG7jrshisUgAAZO+zFdwRNVp1OmEF13NpAJncspOKATVVrsVPZZgHMR6meBiroHC +O78+2jHiPadISFLaKAevs4KxTK2KOuX4dmu9B0z/u4Y4uL9c7G9Dpuz7iu7nuQ+MR mXpgxL+xBZLcPb4YEv3sPKLfxFm6u9L6nJ4X3PUP7+ydDUkOUtadRYNGdpRy7x/q7S 9s/p+oTpchcUfX+eVPZ4DIhIwCLm5jHVYDDrYZIW6o2k0TwvJpHiDZFQFVYos9Dc5y Lxu1V4xgzNJmCtGUqIFtifzTPBMPZaHVgRN/TagDhJ13UsuNAvXFEtB50TZXndSNA9 /Wg0pKxy0ckji0FNNu64Nfbh3UzlPUGeNMHQH4qUO1aRm4VF1pGcljAWMgwVL64OSY uIKcH3bdrBeTc404qejPEtJQ=
- In-reply-to: <131228522.19369.1681591840600@wlpnf0225>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <131228522.19369.1681591840600@wlpnf0225>
On Sat, Apr 15, 2023 at 10:50:40PM +0200, tony.reix@laposte.net wrote:
> Hi,I want to do:s=5s=Mod( (s^2-1)/(2*I*s) , 4 I )s=.... the same...Where I is
> the imaginary number.When trying, I get a forbiden division between polmod
> and complex.
You need to explain how you define it.
If you really want to work in the Z-module Z[i] / (4*i*Z), you can
define
mod4(z)=real(z)+I*(imag(z)%4)
If you want compute in the quotient ring Z[i]/(4*i*Z[i])
(but then I is invertible so mod 4 and mod 4*I are the same) see nfeltmod.
Cheers,
Bill