Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - language - forprime.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 29875-1c62f24b5e) Lines: 455 521 87.3 %
Date: 2025-01-17 09:09:20 Functions: 39 41 95.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2016  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : /**********************************************************************/
      19             : /***                                                                ***/
      20             : /***                     Public prime table                         ***/
      21             : /***                                                                ***/
      22             : /**********************************************************************/
      23             : 
      24             : static ulong _maxprimelim = 0;
      25             : static GEN _prodprimes, _prodprimeslim;
      26             : typedef unsigned char *byteptr;
      27             : 
      28             : /* Build/Rebuild table of prime differences. The actual work is done by the
      29             :  * following two subroutines;  the user entry point is the function
      30             :  * initprimes() below; initprimes1() is the basecase, called when
      31             :  * maxnum (size) is moderate. Must be called after pari_init_stack() )*/
      32             : static void
      33        1862 : initprimes1(ulong size, long *lenp, pari_prime *p1)
      34             : {
      35        1862 :   pari_sp av = avma;
      36             :   long k;
      37        1862 :   byteptr q, r, s, p = (byteptr)stack_calloc(size+2), fin = p + size;
      38             :   pari_prime *re;
      39             : 
      40       22344 :   for (r=q=p,k=1; r<=fin; )
      41             :   {
      42       33516 :     do { r+=k; k+=2; r+=k; } while (*++q);
      43      899346 :     for (s=r; s<=fin; s+=k) *s = 1;
      44             :   }
      45        1862 :   re = p1; *re++ = 2; *re++ = 3; /* 2 and 3 */
      46        1862 :   for (s=q=p+1; ; s=q)
      47             :   {
      48      951482 :     do q++; while (*q);
      49      318402 :     if (q > fin) break;
      50      316540 :     *re++ = (pari_prime) 2*(q-p)+1;
      51             :   }
      52        1862 :   *re++ = 0;
      53        1862 :   *lenp = re - p1;
      54        1862 :   set_avma(av);
      55        1862 : }
      56             : 
      57             : /*  Timing in ms (Athlon/850; reports 512K of secondary cache; looks
      58             :     like there is 64K of quickier cache too).
      59             : 
      60             :       arena|    30m     100m    300m    1000m    2000m  <-- primelimit
      61             :       =================================================
      62             :       16K       1.1053  1.1407  1.2589  1.4368   1.6086
      63             :       24K       1.0000  1.0625  1.1320  1.2443   1.3095
      64             :       32K       1.0000  1.0469  1.0761  1.1336   1.1776
      65             :       48K       1.0000  1.0000  1.0254  1.0445   1.0546
      66             :       50K       1.0000  1.0000  1.0152  1.0345   1.0464
      67             :       52K       1.0000  1.0000  1.0203  1.0273   1.0362
      68             :       54K       1.0000  1.0000  1.0812  1.0216   1.0281
      69             :       56K       1.0526  1.0000  1.0051  1.0144   1.0205
      70             :       58K       1.0000  1.0000  1.0000  1.0086   1.0123
      71             :       60K       0.9473  0.9844  1.0051  1.0014   1.0055
      72             :       62K       1.0000  0.9844  0.9949  0.9971   0.9993
      73             :       64K       1.0000  1.0000  1.0000  1.0000   1.0000
      74             :       66K       1.2632  1.2187  1.2183  1.2055   1.1953
      75             :       68K       1.4211  1.4844  1.4721  1.4425   1.4188
      76             :       70K       1.7368  1.7188  1.7107  1.6767   1.6421
      77             :       72K       1.9474  1.9531  1.9594  1.9023   1.8573
      78             :       74K       2.2105  2.1875  2.1827  2.1207   2.0650
      79             :       76K       2.4211  2.4219  2.4010  2.3305   2.2644
      80             :       78K       2.5789  2.6250  2.6091  2.5330   2.4571
      81             :       80K       2.8421  2.8125  2.8223  2.7213   2.6380
      82             :       84K       3.1053  3.1875  3.1776  3.0819   2.9802
      83             :       88K       3.5263  3.5312  3.5228  3.4124   3.2992
      84             :       92K       3.7895  3.8438  3.8375  3.7213   3.5971
      85             :       96K       4.0000  4.1093  4.1218  3.9986   3.9659
      86             :       112K      4.3684  4.5781  4.5787  4.4583   4.6115
      87             :       128K      4.7368  4.8750  4.9188  4.8075   4.8997
      88             :       192K      5.5263  5.7188  5.8020  5.6911   5.7064
      89             :       256K      6.0000  6.2187  6.3045  6.1954   6.1033
      90             :       384K      6.7368  6.9531  7.0405  6.9181   6.7912
      91             :       512K      7.3158  7.5156  7.6294  7.5000   7.4654
      92             :       768K      9.1579  9.4531  9.6395  9.5014   9.1075
      93             :       1024K    10.368  10.7497 10.9999 10.878   10.8201
      94             :       1536K    12.579  13.3124 13.7660 13.747   13.4739
      95             :       2048K    13.737  14.4839 15.0509 15.151   15.1282
      96             :       3076K    14.789  15.5780 16.2993 16.513   16.3365
      97             : 
      98             :     Now the same number relative to the model
      99             : 
     100             :     (1 + 0.36*sqrt(primelimit)/arena) * (arena <= 64 ? 1.05 : (arena-64)**0.38)
     101             : 
     102             :      [SLOW2_IN_ROOTS = 0.36, ALPHA = 0.38]
     103             : 
     104             :       arena|    30m     100m    300m    1000m    2000m  <-- primelimit
     105             :       =================================================
     106             :         16K    1.014    0.9835  0.9942  0.9889  1.004
     107             :         24K    0.9526   0.9758  0.9861  0.9942  0.981
     108             :         32K    0.971    0.9939  0.9884  0.9849  0.9806
     109             :         48K    0.9902   0.9825  0.996   0.9945  0.9885
     110             :         50K    0.9917   0.9853  0.9906  0.9926  0.9907
     111             :         52K    0.9932   0.9878  0.9999  0.9928  0.9903
     112             :         54K    0.9945   0.9902  1.064   0.9939  0.9913
     113             :         56K    1.048    0.9924  0.9925  0.993   0.9921
     114             :         58K    0.9969   0.9945  0.9909  0.9932  0.9918
     115             :         60K    0.9455   0.9809  0.9992  0.9915  0.9923
     116             :         62K    0.9991   0.9827  0.9921  0.9924  0.9929
     117             :         64K    1        1       1       1       1
     118             :         66K    1.02     0.9849  0.9857  0.9772  0.9704
     119             :         68K    0.8827   0.9232  0.9176  0.9025  0.8903
     120             :         70K    0.9255   0.9177  0.9162  0.9029  0.8881
     121             :         72K    0.9309   0.936   0.9429  0.9219  0.9052
     122             :         74K    0.9715   0.9644  0.967   0.9477  0.9292
     123             :         76K    0.9935   0.9975  0.9946  0.9751  0.9552
     124             :         78K    0.9987   1.021   1.021   1.003   0.9819
     125             :         80K    1.047    1.041   1.052   1.027   1.006
     126             :         84K    1.052    1.086   1.092   1.075   1.053
     127             :         88K    1.116    1.125   1.133   1.117   1.096
     128             :         92K    1.132    1.156   1.167   1.155   1.134
     129             :         96K    1.137    1.177   1.195   1.185   1.196
     130             :        112K    1.067    1.13    1.148   1.15    1.217
     131             :        128K    1.04     1.083   1.113   1.124   1.178
     132             :        192K    0.9368   0.985   1.025   1.051   1.095
     133             :        256K    0.8741   0.9224  0.9619  0.995   1.024
     134             :        384K    0.8103   0.8533  0.8917  0.9282  0.9568
     135             :        512K    0.7753   0.8135  0.8537  0.892   0.935
     136             :        768K    0.8184   0.8638  0.9121  0.9586  0.9705
     137             :       1024K    0.8241   0.8741  0.927   0.979   1.03
     138             :       1536K    0.8505   0.9212  0.9882  1.056   1.096
     139             :       2048K    0.8294   0.8954  0.9655  1.041   1.102
     140             : 
     141             : */
     142             : 
     143             : #ifndef SLOW2_IN_ROOTS
     144             :   /* SLOW2_IN_ROOTS below 3: some slowdown starts to be noticable
     145             :    * when things fit into the cache on Sparc.
     146             :    * The choice of 2.6 gives a slowdown of 1-2% on UltraSparcII,
     147             :    * but makes calculations for "maximum" of 436273009
     148             :    * fit into 256K cache (still common for some architectures).
     149             :    *
     150             :    * One may change it when small caches become uncommon, but the gain
     151             :    * is not going to be very noticable... */
     152             : #  ifdef i386           /* gcc defines this? */
     153             : #    define SLOW2_IN_ROOTS      0.36
     154             : #  else
     155             : #    define SLOW2_IN_ROOTS      2.6
     156             : #  endif
     157             : #endif
     158             : #ifndef CACHE_ARENA
     159             : #  ifdef i386           /* gcc defines this? */
     160             :    /* Due to smaller SLOW2_IN_ROOTS, smaller arena is OK; fit L1 cache */
     161             : #    define CACHE_ARENA (63 * 1024UL) /* No slowdown even with 64K L1 cache */
     162             : #  else
     163             : #    define CACHE_ARENA (200 * 1024UL) /* No slowdown even with 256K L2 cache */
     164             : #  endif
     165             : #endif
     166             : 
     167             : #define CACHE_ALPHA     (0.38)          /* Cache performance model parameter */
     168             : #define CACHE_CUTOFF    (0.018)         /* Cache performance not smooth here */
     169             : 
     170             : static double slow2_in_roots = SLOW2_IN_ROOTS;
     171             : 
     172             : typedef struct {
     173             :     ulong arena;
     174             :     double power;
     175             :     double cutoff;
     176             :     ulong bigarena;
     177             : } cache_model_t;
     178             : 
     179             : static cache_model_t cache_model = { CACHE_ARENA, CACHE_ALPHA, CACHE_CUTOFF, 0 };
     180             : 
     181             : /* Assume that some calculation requires a chunk of memory to be
     182             :    accessed often in more or less random fashion (as in sieving).
     183             :    Assume that the calculation can be done in steps by subdividing the
     184             :    chunk into smaller subchunks (arenas) and treating them
     185             :    separately.  Assume that the overhead of subdivision is equivalent
     186             :    to the number of arenas.
     187             : 
     188             :    Find an optimal size of the arena taking into account the overhead
     189             :    of subdivision, and the overhead of arena not fitting into the
     190             :    cache.  Assume that arenas of size slow2_in_roots slows down the
     191             :    calculation 2x (comparing to very big arenas; when cache hits do
     192             :    not matter).  Since cache performance varies wildly with
     193             :    architecture, load, and wheather (especially with cache coloring
     194             :    enabled), use an idealized cache model based on benchmarks above.
     195             : 
     196             :    Assume that an independent region of FIXED_TO_CACHE bytes is accessed
     197             :    very often concurrently with the arena access.
     198             :  */
     199             : static ulong
     200        1862 : good_arena_size(ulong slow2_size, ulong total, ulong fixed_to_cache,
     201             :                 cache_model_t *cache_model)
     202             : {
     203        1862 :   ulong asize, cache_arena = cache_model->arena;
     204             :   double Xmin, Xmax, A, B, C1, C2, D, V;
     205        1862 :   double alpha = cache_model->power, cut_off = cache_model->cutoff;
     206             : 
     207             :   /* Estimated relative slowdown,
     208             :      with overhead = max((fixed_to_cache+arena)/cache_arena - 1, 0):
     209             : 
     210             :      1 + slow2_size/arena due to initialization overhead;
     211             : 
     212             :      max(1, 4.63 * overhead^0.38 ) due to footprint > cache size.
     213             : 
     214             :      [The latter is hard to substantiate theoretically, but this
     215             :      function describes benchmarks pretty close; it does not hurt that
     216             :      one can minimize it explicitly too ;-).  The switch between
     217             :      different choices of max() happens when overhead=0.018.]
     218             : 
     219             :      Thus the problem is minimizing (1 + slow2_size/arena)*overhead**0.29.
     220             :      This boils down to F=((X+A)/(X+B))X^alpha, X=overhead,
     221             :      B = (1 - fixed_to_cache/cache_arena), A = B + slow2_size/cache_arena,
     222             :      alpha = 0.38, and X>=0.018, X>-B.
     223             : 
     224             :      We need to find the rightmost root of (X+A)*(X+B) - alpha(A-B)X to the
     225             :      right of 0.018 (if such exists and is below Xmax).  Then we manually
     226             :      check the remaining region [0, 0.018].
     227             : 
     228             :      Since we cannot trust the purely-experimental cache-hit slowdown
     229             :      function, as a sanity check always prefer fitting into the
     230             :      cache (or "almost fitting") if F-law predicts that the larger
     231             :      value of the arena provides less than 10% speedup.
     232             :    */
     233             : 
     234             :   /* The simplest case: we fit into cache */
     235        1862 :   asize = cache_arena - fixed_to_cache;
     236        1862 :   if (total <= asize) return total;
     237             :   /* The simple case: fitting into cache doesn't slow us down more than 10% */
     238        1862 :   if (asize > 10 * slow2_size) return asize;
     239             :   /* Slowdown of not fitting into cache is significant.  Try to optimize.
     240             :      Do not be afraid to spend some time on optimization - in trivial
     241             :      cases we do not reach this point; any gain we get should
     242             :      compensate the time spent on optimization.  */
     243             : 
     244           0 :   B = (1 - ((double)fixed_to_cache)/cache_arena);
     245           0 :   A = B + ((double)slow2_size)/cache_arena;
     246           0 :   C2 = A*B;
     247           0 :   C1 = (A + B - 1/alpha*(A - B))/2;
     248           0 :   D = C1*C1 - C2;
     249           0 :   if (D > 0)
     250           0 :     V = cut_off*cut_off + 2*C1*cut_off + C2; /* Value at CUT_OFF */
     251             :   else
     252           0 :     V = 0; /* Peacify the warning */
     253           0 :   Xmin = cut_off;
     254           0 :   Xmax = ((double)total - fixed_to_cache)/cache_arena; /* Two candidates */
     255             : 
     256           0 :   if ( D <= 0 || (V >= 0 && C1 + cut_off >= 0) ) /* slowdown increasing */
     257           0 :     Xmax = cut_off; /* Only one candidate */
     258           0 :   else if (V >= 0 && /* slowdown concave down */
     259           0 :            ((Xmax + C1) <= 0 || (Xmax*Xmax + 2*C1*Xmax + C2) <= 0))
     260             :       /* DO NOTHING */;  /* Keep both candidates */
     261           0 :   else if (V <= 0 && (Xmax*Xmax + 2*C1*Xmax + C2) <= 0) /*slowdown decreasing*/
     262           0 :       Xmin = cut_off; /* Only one candidate */
     263             :   else /* Now we know: 2 roots, the largest is in CUT_OFF..Xmax */
     264           0 :       Xmax = sqrt(D) - C1;
     265           0 :   if (Xmax != Xmin) { /* Xmin == CUT_OFF; Check which one is better */
     266           0 :     double v1 = (cut_off + A)/(cut_off + B);
     267           0 :     double v2 = 2.33 * (Xmax + A)/(Xmax + B) * pow(Xmax, alpha);
     268             : 
     269           0 :     if (1.1 * v2 >= v1) /* Prefer fitting into the cache if slowdown < 10% */
     270           0 :       V = v1;
     271             :     else
     272           0 :     { Xmin = Xmax; V = v2; }
     273           0 :   } else if (B > 0) /* We need V */
     274           0 :     V = 2.33 * (Xmin + A)/(Xmin + B) * pow(Xmin, alpha);
     275           0 :   if (B > 0 && 1.1 * V > A/B)  /* Now Xmin is the minumum.  Compare with 0 */
     276           0 :     Xmin = 0;
     277             : 
     278           0 :   asize = (ulong)((1 + Xmin)*cache_arena - fixed_to_cache);
     279           0 :   if (asize > total) asize = total; /* May happen due to approximations */
     280           0 :   return asize;
     281             : }
     282             : 
     283             : /* Use as in
     284             :     install(set_optimize,lLDG)          \\ Through some M too?
     285             :     set_optimize(2,1) \\ disable dependence on limit
     286             :     \\ 1: how much cache usable, 2: slowdown of setup, 3: alpha, 4: cutoff,
     287             :     \\ 5: cache size (typically whole L2 or L3) in bytes to use in forprime()
     288             :     \\ 2,3,4 are in units of 0.001
     289             : 
     290             :     { time_primes_arena(ar,limit) =     \\ ar = arena size in K
     291             :         set_optimize(1,floor(ar*1024));
     292             :         default(primelimit, 200 000);   \\ 100000 results in *larger* malloc()!
     293             :         gettime;
     294             :         default(primelimit, floor(limit));
     295             :         if(ar >= 1, ar=floor(ar));
     296             :         print("arena "ar"K => "gettime"ms");
     297             :     }
     298             : */
     299             : long
     300           0 : set_optimize(long what, GEN g)
     301             : {
     302           0 :   long ret = 0;
     303             : 
     304           0 :   switch (what) {
     305           0 :   case 1:
     306           0 :     ret = (long)cache_model.arena;
     307           0 :     break;
     308           0 :   case 2:
     309           0 :     ret = (long)(slow2_in_roots * 1000);
     310           0 :     break;
     311           0 :   case 3:
     312           0 :     ret = (long)(cache_model.power * 1000);
     313           0 :     break;
     314           0 :   case 4:
     315           0 :     ret = (long)(cache_model.cutoff * 1000);
     316           0 :     break;
     317           0 :   case 5:
     318           0 :     ret = (long)(cache_model.bigarena);
     319           0 :     break;
     320           0 :   default:
     321           0 :     pari_err_BUG("set_optimize");
     322           0 :     break;
     323             :   }
     324           0 :   if (g != NULL) {
     325           0 :     ulong val = itou(g);
     326             : 
     327           0 :     switch (what) {
     328           0 :     case 1: cache_model.arena = val; break;
     329           0 :     case 2: slow2_in_roots     = (double)val / 1000.; break;
     330           0 :     case 3: cache_model.power  = (double)val / 1000.; break;
     331           0 :     case 4: cache_model.cutoff = (double)val / 1000.; break;
     332           0 :     case 5: cache_model.bigarena = val; break;
     333             :     }
     334             :   }
     335           0 :   return ret;
     336             : }
     337             : 
     338             : /* s is odd; prime (starting from 3 = known_primes[2]), terminated by a 0 byte.
     339             :  * Checks n odd numbers starting at 'start', setting bytes to 0 (composite)
     340             :  * or 1 (prime), starting at data */
     341             : static void
     342        7134 : sieve_chunk(pari_prime *known_primes, ulong s, byteptr data, ulong n)
     343             : {
     344        7134 :   ulong p, cnt = n-1, start = s;
     345             :   pari_prime *q;
     346             : 
     347        7134 :   memset(data, 0, n);
     348        7134 :   start >>= 1;  /* (start - 1)/2 */
     349        7134 :   start += n; /* Corresponds to the end */
     350             :   /* data corresponds to start, q runs over primediffs */
     351     1024872 :   for (q = known_primes + 1, p = 3; p; p = *++q)
     352             :   { /* first odd number >= start > p and divisible by p
     353             :        = last odd number <= start + 2p - 2 and 0 (mod p)
     354             :        = p + last number <= start + p - 2 and 0 (mod 2p)
     355             :        = p + start+p-2 - (start+p-2) % 2p
     356             :        = start + 2(p - 1 - ((start-1)/2 + (p-1)/2) % p). */
     357     1017738 :     long off = cnt - ((start+(p>>1)) % p);
     358  1625414974 :     while (off >= 0) { data[off] = 1; off -= p; }
     359             :   }
     360        7134 : }
     361             : 
     362             : static long
     363        1862 : ZV_size(GEN x)
     364             : {
     365        1862 :   long i, l = lg(x), s = l;
     366       26068 :   for (i = 1; i < l; i++) s += lgefint(gel(x,i));
     367        1862 :   return s;
     368             : }
     369             : /* avoid gcopy_avma so as to deallocate using free() in pari_close_primes */
     370             : static GEN
     371        1862 : ZV_copy_alloc(GEN x)
     372             : {
     373        1862 :   long i, l = lg(x), s = ZV_size(x);
     374        1862 :   GEN z = (GEN)pari_malloc(s * sizeof(long)), av = z + s;
     375       26068 :   for (i = 1; i < l; i++) gel(z,i) = av = icopy_avma(gel(x,i), (pari_sp)av);
     376        1862 :   z[0] = x[0] & (TYPBITS|LGBITS); return z;
     377             : }
     378             : 
     379             : static void
     380        1862 : set_prodprimes(void)
     381             : {
     382        1862 :   pari_sp av = avma;
     383        1862 :   ulong b = 1UL << 8, M = minuu(maxprime(), GP_DATA->factorlimit);
     384        1862 :   GEN W, v = primes_interval_zv(3, M);
     385        1862 :   long u, j, jold, l = lg(v);
     386             : 
     387        1862 :   W = cgetg(64+1, t_VEC);
     388        1862 :   M = v[l-1]; /* = precprime(M) */
     389        1862 :   _prodprimeslim = cgetalloc(64+1, t_VECSMALL);
     390        1862 :   if (b > M) b = M;
     391   152730550 :   for (jold = j = u = 1; j < l; j++)
     392   152728688 :     if (uel(v,j) >= b) /* if j = l-1, then b = M = v[j] */
     393             :     {
     394       24206 :       long lw = (j == l-1? l: j) - jold + 1;
     395       24206 :       GEN w = v+jold-1;
     396       24206 :       w[0] = evaltyp(t_VECSMALL) | _evallg(lw);
     397       24206 :       _prodprimeslim[u] = w[lw - 1];
     398             :       /* product of primes from
     399             :        *   p_jold = 3 if first entry, else nextprime(_prodprime_lim[u - 1] + 1)
     400             :        * to
     401             :        *   p_{j-1} = _prodprimeslim[u] = precprime(M or 2^{u+7}) */
     402       24206 :       gel(W,u++) = zv_prod_Z(w);
     403       24206 :       jold = j; b *= 2;
     404       24206 :       if (b > M) b = M; /* truncate last run */
     405             :     }
     406       24206 :   for (j = 2; j < u; j++) gel(W,j) = mulii(gel(W,j-1), gel(W,j));
     407        1862 :   setlg(W, u); _prodprimes = ZV_copy_alloc(W);
     408        1862 :   setlg(_prodprimeslim, u); set_avma(av);
     409        1862 : }
     410             : 
     411             : static void
     412        1862 : initprimes0(ulong maxnum, long *lenp, pari_prime *p1)
     413             : {
     414        1862 :   pari_sp av = avma, bot = pari_mainstack->bot;
     415             :   long alloced, psize;
     416             :   byteptr q, end, p;
     417             :   ulong remains, curlow, rootnum, asize, prime_above, last;
     418             :   pari_prime *end1, *curdiff, *p_prime_above;
     419             : 
     420        1862 :   if (!odd(maxnum)) maxnum--; /* make it odd. */
     421             :   /* base case */
     422        1862 :   if (maxnum < 1ul<<17) { initprimes1(maxnum>>1, lenp, p1); return; }
     423             : 
     424             :   /* Checked to be enough up to 40e6, attained at 155893 */
     425        1862 :   rootnum = usqrt(maxnum) | 1;
     426        1862 :   initprimes1(rootnum>>1, &psize, p1);
     427        1862 :   last = rootnum;
     428        1862 :   end1 = p1 + psize - 1;
     429        1862 :   remains = (maxnum - last) >> 1; /* number of odd numbers to check */
     430             :   /* we access primes array of psize too; but we access it consecutively,
     431             :    * thus we do not include it in fixed_to_cache */
     432        1862 :   asize = good_arena_size((ulong)(rootnum * slow2_in_roots), remains+1, 0,
     433             :                           &cache_model) - 1;
     434             :   /* enough room on the stack ? */
     435        1862 :   alloced = (((byteptr)avma) <= ((byteptr)bot) + asize);
     436        1862 :   p = (byteptr)(alloced? pari_malloc(asize+1): stack_malloc(asize+1));
     437        1862 :   end = p + asize; /* the 0 sentinel goes at end. */
     438        1862 :   curlow = last + 2; /* First candidate: know primes up to last (odd). */
     439        1862 :   curdiff = end1;
     440             : 
     441             :   /* During each iteration p..end-1 represents a range of odd
     442             :      numbers.   */
     443        1862 :   p_prime_above = p1 + 2;
     444        1862 :   prime_above = 3;
     445        8996 :   while (remains)
     446             :   { /* cycle over arenas; performance not crucial */
     447             :     pari_prime was_delta;
     448        7134 :     if (asize > remains) { asize = remains; end = p + asize; }
     449             :     /* Fake the upper limit appropriate for the given arena */
     450      325536 :     while (prime_above*prime_above <= curlow + (asize << 1) && *p_prime_above)
     451      318402 :       prime_above = *p_prime_above++;
     452        7134 :     was_delta = *p_prime_above;
     453        7134 :     *p_prime_above = 0; /* sentinel for sieve_chunk */
     454        7134 :     sieve_chunk(p1, curlow, p, asize);
     455        7134 :     *p_prime_above = was_delta; /* restore */
     456             : 
     457        7134 :     p[asize] = 0; /* sentinel */
     458        7134 :     for (q = p; ; q++)
     459             :     { /* q runs over addresses corresponding to primes */
     460   975278046 :       while (*q) q++; /* use sentinel at end */
     461   152417420 :       if (q >= end) break;
     462   152410286 :       *curdiff++ = (pari_prime) 2*(q-p) + curlow;
     463             :     }
     464        7134 :     remains -= asize;
     465        7134 :     curlow += (asize<<1);
     466             :   }
     467        1862 :   *curdiff++ = 0; /* sentinel */
     468        1862 :   *lenp = curdiff - p1;
     469        1862 :   if (alloced) pari_free(p); else set_avma(av);
     470             : }
     471             : 
     472             : ulong
     473    33336096 : maxprime(void) { return pari_PRIMES? pari_PRIMES[pari_PRIMES[0]]: 0; }
     474             : ulong
     475    72683628 : maxprimelim(void) { return pari_PRIMES? _maxprimelim: 0; }
     476             : ulong
     477         196 : maxprimeN(void) { return pari_PRIMES? pari_PRIMES[0]: 0; }
     478             : GEN
     479      937368 : prodprimes(void) { return pari_PRIMES? _prodprimes: NULL; }
     480             : GEN
     481      937368 : prodprimeslim(void) { return pari_PRIMES? _prodprimeslim: NULL; }
     482             : void
     483           0 : maxprime_check(ulong c) { if (maxprime() < c) pari_err_MAXPRIME(c); }
     484             : 
     485             : static pari_prime*
     486        1862 : initprimes(ulong maxnum)
     487             : {
     488             :   pari_prime *t;
     489             :   long len;
     490             :   ulong N;
     491        1862 :   if (maxnum < 65537)
     492             :   {
     493           0 :     maxnum = 65537;
     494           0 :     N = 6543;
     495             :   }
     496             :   else
     497        1862 :     N = (long) ceil(primepi_upper_bound((double)maxnum));
     498        1862 :   t = (pari_prime*) pari_malloc(sizeof(*t) * (N+2));
     499        1862 :   initprimes0(maxnum, &len, t+1); t[0] = (pari_prime)(len-1);
     500        1862 :   _maxprimelim = maxnum;
     501        1862 :   return (pari_prime*) pari_realloc(t, sizeof(*t) * (len+1));
     502             : }
     503             : 
     504             : void
     505        1862 : initprimetable(ulong maxnum)
     506             : {
     507        1862 :   pari_prime *old = pari_PRIMES;
     508             : #ifdef LONG_IS_64BIT
     509        1604 :   maxnum = minuu(maxnum, 4294967295);
     510             : #endif
     511        1862 :   pari_PRIMES = initprimes(maxnum);
     512        1862 :   if (old) free(old);
     513        1862 :   set_prodprimes();
     514        1862 : }
     515             : 
     516             : /**********************************************************************/
     517             : /***                                                                ***/
     518             : /***                     forprime                                   ***/
     519             : /***                                                                ***/
     520             : /**********************************************************************/
     521             : 
     522             : /* return good chunk size for sieve, 16 | chunk + 2 */
     523             : static ulong
     524     8447797 : optimize_chunk(ulong a, ulong b)
     525             : {
     526             :   /* TODO: Optimize size (surely < 512k to stay in L2 cache, but not so large
     527             :    * as to force recalculating too often). */
     528             :   /* bigarena is in bytes, we use bits, and only odds */
     529     8447797 :   ulong defchunk = (a>>31) > 1 ? 0x80000UL : 0x8000;
     530     8447797 :   ulong chunk = (cache_model.bigarena ? cache_model.bigarena : defchunk)<<4;
     531     8447797 :   ulong tmp = (b - a) / chunk + 1;
     532             : 
     533     8447797 :   if (tmp == 1)
     534         196 :     chunk = b - a + 16;
     535             :   else
     536     8447601 :     chunk = (b - a) / tmp + 15;
     537             :   /* ensure 16 | chunk + 2 */
     538     8447797 :   return (((chunk + 2)>>4)<<4) - 2;
     539             : }
     540             : static void
     541     8447797 : sieve_init(forprime_t *T, ulong a, ulong b)
     542             : {
     543     8447797 :   T->sieveb = b;
     544     8447797 :   T->chunk = optimize_chunk(a, b);
     545             :   /* >> 1 [only odds] + 3 [convert from bits to bytes] */
     546     8447801 :   T->isieve = (unsigned char*)stack_malloc(((T->chunk+2) >> 4) + 1);
     547     8447773 :   T->cache[0] = 0;
     548     8447773 :   T->a = a;
     549     8447773 :   T->end = minuu(a + T->chunk, b);
     550     8447759 :   T->pos = T->maxpos = 0;
     551     8447759 : }
     552             : 
     553             : enum {PRST_none, PRST_diffptr, PRST_sieve, PRST_unextprime, PRST_nextprime};
     554             : 
     555             : static void
     556     8031584 : u_forprime_set_prime_table(forprime_t *T, ulong a)
     557             : {
     558     8031584 :   T->strategy = PRST_diffptr;
     559     8031584 :   if (a < 3)
     560             :   {
     561     2396252 :     T->p = 0;
     562     2396252 :     T->n = 0;
     563             :   }
     564             :   else
     565             :   {
     566     5635332 :     long n = PRIMES_search(a - 1);
     567     5635587 :     if (n < 0) n = - n - 1;
     568     5635587 :     T->n = n;
     569     5635587 :     T->p = pari_PRIMES[n];
     570             :   }
     571     8031839 : }
     572             : 
     573             : /* Set p so that p + q the smallest integer = c (mod q) and > original p.
     574             :  * Assume 0 < c < q. */
     575             : static void
     576      101996 : arith_set(forprime_t *T)
     577             : {
     578      101996 :   ulong r = T->p % T->q; /* 0 <= r <= min(p, q-1) */
     579      101996 :   pari_sp av = avma;
     580      101996 :   GEN d = adduu(T->p - r, T->c); /* = c mod q */
     581      101996 :   if (T->c > r) d = subiu(d, T->q);
     582             :   /* d = c mod q,  d = c > r? p-r+c-q: p-r+c, so that
     583             :    *  d <= p  and  d+q = c>r? p-r+c  : p-r+c+q > p */
     584      101996 :   if (signe(d) <= 0)
     585             :   {
     586          20 :     T->p = 0;
     587          20 :     T->strategy = PRST_nextprime;
     588          20 :     affii(d, T->pp);
     589             :   }
     590             :   else
     591      101976 :     T->p = itou_or_0(d);
     592      101996 :   set_avma(av);
     593      101996 : }
     594             : 
     595             : /* Run through primes in arithmetic progression = c (mod q).
     596             :  * Warning: b = ULONG_MAX may signal that we are called by higher level
     597             :  * function handling a continuation for larger b; this sentinel value
     598             :  * must not be modified */
     599             : static int
     600    23302765 : u_forprime_sieve_arith_init(forprime_t *T, struct pari_sieve *psieve,
     601             :                             ulong a, ulong b, ulong c, ulong q)
     602             : {
     603             : #ifdef LONG_IS_64BIT
     604    19962769 :   const ulong UPRIME_MAX = 18446744073709551557UL;
     605             : #else
     606     3339996 :   const ulong UPRIME_MAX = 4294967291UL;
     607             : #endif
     608             :   ulong Plim, P, P2, Y, sieveb;
     609             : 
     610    23302765 :   if (!odd(b) && b > 2) b--;
     611    23302637 :   if (a > b || b < 2)
     612             :   {
     613      883712 :     T->strategy = PRST_diffptr; /* paranoia */
     614      883712 :     T->p = 0; /* empty */
     615      883712 :     T->b = 0; /* empty */
     616      883712 :     T->n = 0;
     617      883712 :     return 0;
     618             :   }
     619    22418925 :   P = maxprime();
     620    22418940 :   if (b != ULONG_MAX && b > UPRIME_MAX) b = UPRIME_MAX;
     621    22418940 :   if (q != 1)
     622             :   {
     623             :     ulong D;
     624      588916 :     c %= q; D = ugcd(c, q);
     625      588908 :     if (D != 1) { a = maxuu(a,D); if (b != ULONG_MAX) b = minuu(b,D); }
     626      588908 :     if (odd(q) && (a > 2 || c != 2))
     627             :     { /* only *odd* primes. If a <= c = 2, then p = 2 must be included :-( */
     628      511136 :       if (!odd(c)) c += q;
     629      511532 :       q <<= 1;
     630             :     }
     631             :   }
     632    22419301 :   T->q = q;
     633    22419301 :   T->c = c;
     634    22419301 :   T->strategy = PRST_none; /* unknown */
     635    22419301 :   T->psieve = psieve; /* unused for now */
     636    22419301 :   T->isieve = NULL; /* unused for now */
     637    22419301 :   T->b = b;
     638    22419301 :   if (P >= b) { /* [a,b] \subset prime table */
     639     4419166 :     u_forprime_set_prime_table(T, a);
     640     4419137 :     return 1;
     641             :   }
     642             :   /* b > P */
     643    18000135 :   if (a >= P)
     644             :   {
     645    14387657 :     T->p = a - 1;
     646    14387657 :     if (T->q != 1) arith_set(T);
     647             :   }
     648             :   else
     649     3612478 :     u_forprime_set_prime_table(T, a);
     650    18000102 :   if (T->strategy == PRST_none) T->strategy = PRST_unextprime;
     651             :   /* now strategy is either PRST_diffptr or PRST_unextprime */
     652             : 
     653    18000102 :   P2 = (P & HIGHMASK)? 0 : P*P;
     654    18000102 :   sieveb = b; if (P2 && P2 < b) sieveb = P2;
     655             :   /* maxprime^2 >= sieveb */
     656    18000102 :   Plim = maxprimelim();
     657    18000112 :   if (a <= Plim) a = Plim + 1;
     658    18000112 :   if (sieveb < a + 16) return 1;
     659     8950930 :   Y = sieveb - a + 1; /* number of integers in sievable interval > 16 */
     660     8950930 :   P = usqrt(sieveb); /* largest sieving prime */
     661             :   /* FIXME: should sieve as well if q != 1, adapt sieve code */
     662     8951075 :   if (q == 1 && (!P2 || P2 > a) && 3/M_LN2 * Y >= uprimepi(P))
     663             :   /* Sieve implemented & possible & not too costly. Cost model is
     664             :    * - nextprime: about Y / log(b) primes to test [neglect cost for composites]
     665             :    *   individual cost average = 3 log2(b) mulmod, total = 3 Y / log(2) mulmod
     666             :    * - sieve: pi(P) mod + Y loglog(b) add
     667             :    * Since loglog(b) < 4, and add < 10*mulmod, we neglect the Y loglog(b) term.
     668             :    * We have mod < mulmod < 2*mod; for now, assume mulmod ~ mod. */
     669             :   {
     670     8447800 :     if (T->strategy == PRST_unextprime) T->strategy = PRST_sieve;
     671     8447800 :     sieve_init(T, a, sieveb);
     672             :   }
     673     8951157 :   return 1;
     674             : }
     675             : 
     676             : int
     677    17972885 : u_forprime_arith_init(forprime_t *T, ulong a, ulong b, ulong c, ulong q)
     678    17972885 : { return u_forprime_sieve_arith_init(T, NULL, a, b, c, q); }
     679             : 
     680             : /* will run through primes in [a,b] */
     681             : int
     682    17381407 : u_forprime_init(forprime_t *T, ulong a, ulong b)
     683    17381407 : { return u_forprime_arith_init(T, a,b, 0,1); }
     684             : 
     685             : /* will run through primes in [a,b] */
     686             : static int
     687     5329550 : u_forprime_sieve_init(forprime_t *T, struct pari_sieve *s, ulong b)
     688     5329550 : { return u_forprime_sieve_arith_init(T, s, s->start, b, s->c, s->q); }
     689             : 
     690             : /* now only run through primes <= c; assume c <= b above */
     691             : void
     692          63 : u_forprime_restrict(forprime_t *T, ulong c) { T->b = c; }
     693             : 
     694             : /* b = NULL: loop forever */
     695             : int
     696        2420 : forprimestep_init(forprime_t *T, GEN a, GEN b, GEN q)
     697             : {
     698        2420 :   GEN c = NULL;
     699             :   long lb;
     700             : 
     701        2420 :   a = gceil(a); if (typ(a) != t_INT) pari_err_TYPE("forprime_init",a);
     702        2420 :   T->qq = NULL; T->q = 1; T->c = 0;
     703        2420 :   if (q)
     704             :   {
     705         133 :     switch(typ(q))
     706             :     {
     707          56 :       case t_INT:
     708          56 :         c = a; break;
     709          77 :       case t_INTMOD:
     710          77 :         c = gel(q,2); q = gel(q,1);
     711             :         /* first int >= initial a which is = c (mod q) */
     712          77 :         a = addii(a, modii(subii(c,a), q)); break;
     713           0 :       default: pari_err_TYPE("forprimestep_init",q);
     714             :     }
     715         133 :     if (signe(q) <= 0) pari_err_TYPE("forprimestep_init (q <= 0)",q);
     716         133 :     if (equali1(q)) c = q = NULL;
     717             :     else
     718             :     {
     719         133 :       GEN D = gcdii(c, q);
     720         133 :       if (!is_pm1(D))
     721             :       { /* at most one prime: c */
     722          42 :         if (cmpii(a, D) < 0) a = D;
     723          42 :         if (gcmp(b, D) > 0) b = D;
     724             :       }
     725         133 :       if ((T->q = itou_or_0(q)))
     726         125 :         T->c = umodiu(c, T->q);
     727             :       else
     728           8 :         T->qq = q;
     729             :     }
     730             :   }
     731        2420 :   if (signe(a) <= 0) a = q? modii(a, q): gen_1;
     732        2420 :   if (b && typ(b) != t_INFINITY)
     733             :   {
     734        1013 :     b = gfloor(b);
     735        1013 :     if (typ(b) != t_INT) pari_err_TYPE("forprime_init",b);
     736        1013 :     if (signe(b) < 0 || cmpii(a,b) > 0)
     737             :     {
     738          21 :       T->strategy = PRST_nextprime; /* paranoia */
     739          21 :       T->bb = T->pp = gen_0; return 0;
     740             :     }
     741         992 :     lb = lgefint(b);
     742         992 :     T->bb = b;
     743             :   }
     744        1407 :   else if (!b || inf_get_sign(b) > 0)
     745             :   {
     746        1407 :     lb = lgefint(a) + 4;
     747        1407 :     T->bb = NULL;
     748             :   }
     749             :   else /* b == -oo */
     750             :   {
     751           0 :     T->strategy = PRST_nextprime; /* paranoia */
     752           0 :     T->bb = T->pp = gen_0; return 0;
     753             :   }
     754        2399 :   T->pp = cgeti(T->qq? maxuu(lb, lgefint(T->qq)): lb);
     755             :   /* a, b are positive integers, a <= b */
     756        2399 :   if (!T->qq && lgefint(a) == 3) /* lb == 3 implies b != NULL */
     757        2256 :     return u_forprime_arith_init(T, uel(a,2), lb == 3? uel(b,2): ULONG_MAX,
     758             :                                     T->c, T->q);
     759         143 :   T->strategy = PRST_nextprime;
     760         143 :   affii(T->qq? subii(a,T->qq): subiu(a,T->q), T->pp); return 1;
     761             : }
     762             : int
     763        1315 : forprime_init(forprime_t *T, GEN a, GEN b)
     764        1315 : { return forprimestep_init(T,a,b,NULL); }
     765             : 
     766             : /* assume a <= b <= maxprime()^2, a,b odd, sieve[n] corresponds to
     767             :  *   a+16*n, a+16*n+2, ..., a+16*n+14 (bits 0 to 7)
     768             :  * maxpos = index of last sieve cell.
     769             :  * b-a+2 must be divisible by 16 for use by u_forprime_next */
     770             : static void
     771        9129 : sieve_block(ulong a, ulong b, ulong maxpos, unsigned char* sieve)
     772             : {
     773        9129 :   ulong i, lim = usqrt(b), sz = (b-a) >> 1;
     774        9129 :   (void)memset(sieve, 0, maxpos+1);
     775        9129 :   for (i = 2;; i++)
     776    24482880 :   { /* p is odd */
     777    24492009 :     ulong k, r, p = pari_PRIMES[i]; /* starts at p = 3 */
     778    24492009 :     if (p > lim) break;
     779             : 
     780             :     /* solve a + 2k = 0 (mod p) */
     781    24482880 :     r = a % p;
     782    24482880 :     if (r == 0)
     783       16042 :       k = 0;
     784             :     else
     785             :     {
     786    24466838 :       k = p - r;
     787    24466838 :       if (odd(k)) k += p;
     788    24466838 :       k >>= 1;
     789             :     }
     790             :     /* m = a + 2k is the smallest odd m >= a, p | m */
     791             :     /* position n (corresponds to a+2n) is sieve[n>>3], bit n&7 */
     792  5732223569 :     while (k <= sz) { sieve[k>>3] |= 1 << (k&7); k += p; /* 2k += 2p */ }
     793             :   }
     794        9129 : }
     795             : 
     796             : static void
     797        1862 : pari_sieve_init(struct pari_sieve *s, ulong a, ulong b)
     798             : {
     799        1862 :   ulong maxpos= (b - a) >> 4;
     800        1862 :   s->start = a; s->end = b;
     801        1862 :   s->sieve = (unsigned char*) pari_malloc(maxpos+1);
     802        1862 :   s->c = 0; s->q = 1;
     803        1862 :   sieve_block(a, b, maxpos, s->sieve);
     804        1862 :   s->maxpos = maxpos; /* must be last in case of SIGINT */
     805        1862 : }
     806             : 
     807             : static struct pari_sieve pari_sieve_modular;
     808             : 
     809             : #ifdef LONG_IS_64BIT
     810             : #define PARI_MODULAR_BASE ((1UL<<((BITS_IN_LONG-2)>>1))+1)
     811             : #else
     812             : #define PARI_MODULAR_BASE ((1UL<<(BITS_IN_LONG-1))+1)
     813             : #endif
     814             : 
     815             : void
     816        1862 : pari_init_primes(ulong maxprime)
     817             : {
     818        1862 :   ulong a = PARI_MODULAR_BASE, b = a + (1UL<<20)-2;
     819        1862 :   initprimetable(maxprime);
     820        1862 :   pari_sieve_init(&pari_sieve_modular, a, b);
     821        1862 : }
     822             : 
     823             : void
     824        1862 : pari_close_primes(void)
     825             : {
     826        1862 :   if (pari_PRIMES)
     827             :   {
     828        1862 :     pari_free(pari_PRIMES);
     829        1862 :     pari_free(_prodprimes);
     830        1862 :     pari_free(_prodprimeslim);
     831             :   }
     832        1862 :   pari_free(pari_sieve_modular.sieve);
     833        1862 : }
     834             : 
     835             : void
     836     4475341 : init_modular_small(forprime_t *S)
     837             : {
     838             : #ifdef LONG_IS_64BIT
     839     3836165 :   u_forprime_sieve_init(S, &pari_sieve_modular, ULONG_MAX);
     840             : #else
     841      639176 :   ulong a = (1UL<<((BITS_IN_LONG-2)>>1))+1;
     842      639176 :   u_forprime_init(S, a, ULONG_MAX);
     843             : #endif
     844     4475354 : }
     845             : 
     846             : void
     847    10446182 : init_modular_big(forprime_t *S)
     848             : {
     849             : #ifdef LONG_IS_64BIT
     850     8952797 :   u_forprime_init(S, HIGHBIT + 1, ULONG_MAX);
     851             : #else
     852     1493385 :   u_forprime_sieve_init(S, &pari_sieve_modular, ULONG_MAX);
     853             : #endif
     854    10446312 : }
     855             : 
     856             : /* T->cache is a 0-terminated list of primes, return the first one and
     857             :  * remove it from list. Most of the time the list contains a single prime */
     858             : static ulong
     859   130035473 : shift_cache(forprime_t *T)
     860             : {
     861             :   long i;
     862   130035473 :   T->p = T->cache[0];
     863   173863134 :   for (i = 1;; i++)  /* remove one prime from cache */
     864   173863134 :     if (! (T->cache[i-1] = T->cache[i]) ) break;
     865   130035473 :   return T->p;
     866             : }
     867             : 
     868             : ulong
     869   203938072 : u_forprime_next(forprime_t *T)
     870             : {
     871   203938072 :   if (T->strategy == PRST_diffptr)
     872             :   {
     873             :     for(;;)
     874             :     {
     875   217152773 :       if (++T->n <= pari_PRIMES[0])
     876             :       {
     877   217152612 :         T->p = pari_PRIMES[T->n];
     878   217152612 :         if (T->p > T->b) return 0;
     879   216964938 :         if (T->q == 1 || T->p % T->q == T->c) return T->p;
     880             :       }
     881             :       else
     882             :       { /* beyond the table */
     883         161 :         T->strategy = T->isieve? PRST_sieve: PRST_unextprime;
     884         161 :         if (T->q != 1) { arith_set(T); if (!T->p) return 0; }
     885             :         /* T->p possibly not a prime if q != 1 */
     886         161 :         break;
     887             :       }
     888             :     }
     889             :   }
     890   144943943 :   if (T->strategy == PRST_sieve)
     891             :   { /* require sieveb - a >= 16 */
     892             :     ulong n;
     893   130036017 :     if (T->cache[0]) return shift_cache(T);
     894    93002010 : NEXT_CHUNK:
     895    93010320 :     if (T->psieve)
     896             :     {
     897     5329558 :       T->sieve = T->psieve->sieve;
     898     5329558 :       T->end = T->psieve->end;
     899     5329558 :       if (T->end > T->sieveb) T->end = T->sieveb;
     900     5329558 :       T->maxpos = T->psieve->maxpos;
     901     5329558 :       T->pos = 0;
     902     5329558 :       T->psieve = NULL;
     903             :     }
     904   140841751 :     for (n = T->pos; n < T->maxpos; n++)
     905   140831300 :       if (T->sieve[n] != 0xFF)
     906             :       {
     907    92999869 :         unsigned char mask = T->sieve[n];
     908    92999869 :         ulong p = T->a + (n<<4);
     909    92999869 :         long i = 0;
     910    92999869 :         T->pos = n;
     911    92999869 :         if (!(mask &  1)) T->cache[i++] = p;
     912    92999869 :         if (!(mask &  2)) T->cache[i++] = p+2;
     913    92999869 :         if (!(mask &  4)) T->cache[i++] = p+4;
     914    92999869 :         if (!(mask &  8)) T->cache[i++] = p+6;
     915    92999869 :         if (!(mask & 16)) T->cache[i++] = p+8;
     916    92999869 :         if (!(mask & 32)) T->cache[i++] = p+10;
     917    92999869 :         if (!(mask & 64)) T->cache[i++] = p+12;
     918    92999869 :         if (!(mask &128)) T->cache[i++] = p+14;
     919    92999869 :         T->cache[i] = 0;
     920    92999869 :         T->pos = n+1;
     921    92999869 :         return shift_cache(T);
     922             :       }
     923             :     /* n = T->maxpos, last cell: check p <= b */
     924       10451 :     if (T->maxpos && n == T->maxpos && T->sieve[n] != 0xFF)
     925             :     {
     926        2873 :       unsigned char mask = T->sieve[n];
     927        2873 :       ulong p = T->a + (n<<4);
     928        2873 :       long i = 0;
     929        2873 :       T->pos = n;
     930        2873 :       if (!(mask &  1) && p <= T->sieveb) T->cache[i++] = p;
     931        2873 :       if (!(mask &  2) && p <= T->sieveb-2) T->cache[i++] = p+2;
     932        2873 :       if (!(mask &  4) && p <= T->sieveb-4) T->cache[i++] = p+4;
     933        2873 :       if (!(mask &  8) && p <= T->sieveb-6) T->cache[i++] = p+6;
     934        2873 :       if (!(mask & 16) && p <= T->sieveb-8) T->cache[i++] = p+8;
     935        2873 :       if (!(mask & 32) && p <= T->sieveb-10) T->cache[i++] = p+10;
     936        2873 :       if (!(mask & 64) && p <= T->sieveb-12) T->cache[i++] = p+12;
     937        2873 :       if (!(mask &128) && p <= T->sieveb-14) T->cache[i++] = p+14;
     938        2873 :       if (i)
     939             :       {
     940        2772 :         T->cache[i] = 0;
     941        2772 :         T->pos = n+1;
     942        2772 :         return shift_cache(T);
     943             :       }
     944             :     }
     945             : 
     946        7679 :     if (T->maxpos && T->end >= T->sieveb) /* done with sieves ? */
     947             :     {
     948         419 :       if (T->sieveb == T->b && T->b != ULONG_MAX) return 0;
     949           1 :       T->strategy = PRST_unextprime;
     950             :     }
     951             :     else
     952             :     { /* initialize next chunk */
     953        7260 :       T->sieve = T->isieve;
     954        7260 :       if (T->maxpos == 0)
     955        3366 :         T->a |= 1; /* first time; ensure odd */
     956             :       else
     957        3894 :         T->a = (T->end + 2) | 1;
     958        7260 :       T->end = T->a + T->chunk; /* may overflow */
     959        7260 :       if (T->end < T->a || T->end > T->sieveb) T->end = T->sieveb;
     960             :       /* end and a are odd; sieve[k] contains the a + 8*2k + (0,2,...,14).
     961             :        * The largest k is (end-a) >> 4 */
     962        7260 :       T->pos = 0;
     963        7260 :       T->maxpos = (T->end - T->a) >> 4; /* >= 1 */
     964        7260 :       sieve_block(T->a, T->end, T->maxpos, T->sieve);
     965        8310 :       goto NEXT_CHUNK;
     966             :     }
     967             :   }
     968    14907927 :   if (T->strategy == PRST_unextprime)
     969             :   {
     970    14905887 :     if (T->q == 1)
     971             :     {
     972             : #ifdef LONG_IS_64BIT
     973    14752752 :       switch(T->p)
     974             :       {
     975             : #define retp(x) return T->p = (HIGHBIT+x <= T->b)? HIGHBIT+x: 0
     976     8952877 :         case HIGHBIT: retp(29);
     977     3186559 :         case HIGHBIT + 29: retp(99);
     978      361191 :         case HIGHBIT + 99: retp(123);
     979      209984 :         case HIGHBIT +123: retp(131);
     980      151366 :         case HIGHBIT +131: retp(155);
     981      130509 :         case HIGHBIT +155: retp(255);
     982      109175 :         case HIGHBIT +255: retp(269);
     983       99432 :         case HIGHBIT +269: retp(359);
     984       79515 :         case HIGHBIT +359: retp(435);
     985       60216 :         case HIGHBIT +435: retp(449);
     986       53425 :         case HIGHBIT +449: retp(453);
     987       50523 :         case HIGHBIT +453: retp(485);
     988       44498 :         case HIGHBIT +485: retp(491);
     989       41417 :         case HIGHBIT +491: retp(543);
     990       39005 :         case HIGHBIT +543: retp(585);
     991       36395 :         case HIGHBIT +585: retp(599);
     992       30243 :         case HIGHBIT +599: retp(753);
     993       29463 :         case HIGHBIT +753: retp(849);
     994       28383 :         case HIGHBIT +849: retp(879);
     995       26757 :         case HIGHBIT +879: retp(885);
     996       26061 :         case HIGHBIT +885: retp(903);
     997       25581 :         case HIGHBIT +903: retp(995);
     998             : #undef retp
     999             :       }
    1000             : #endif
    1001      980249 :       T->p = unextprime(T->p + 1);
    1002      980277 :       if (T->p > T->b) return 0;
    1003             :     }
    1004             :     else do {
    1005     2798512 :       T->p += T->q;
    1006     2798512 :       if (T->p < T->q || T->p > T->b) { T->p = 0; break; } /* overflow */
    1007     2798486 :     } while (!uisprime(T->p));
    1008     1133283 :     if (T->p && T->p <= T->b) return T->p;
    1009             :     /* overflow ulong, switch to GEN */
    1010          48 :     T->strategy = PRST_nextprime;
    1011             :   }
    1012        2088 :   return 0; /* overflow */
    1013             : }
    1014             : 
    1015             : GEN
    1016    45385959 : forprime_next(forprime_t *T)
    1017             : {
    1018             :   pari_sp av;
    1019             :   GEN p;
    1020    45385959 :   if (T->strategy != PRST_nextprime)
    1021             :   {
    1022    45378080 :     ulong u = u_forprime_next(T);
    1023    45378080 :     if (u) { affui(u, T->pp); return T->pp; }
    1024             :     /* failure */
    1025         814 :     if (T->strategy != PRST_nextprime) return NULL; /* we're done */
    1026             :     /* overflow ulong, switch to GEN */
    1027          48 :     u = ULONG_MAX;
    1028          48 :     if (T->q > 1) u -= (ULONG_MAX-T->c) % T->q;
    1029          48 :     affui(u, T->pp);
    1030             :   }
    1031        7927 :   av = avma; p = T->pp;
    1032        7927 :   if (T->q == 1)
    1033             :   {
    1034        7749 :     p = nextprime(addiu(p, 1));
    1035        7749 :     if (T->bb && abscmpii(p, T->bb) > 0) return gc_NULL(av);
    1036             :   } else do {
    1037        3341 :     p = T->qq? addii(p, T->qq): addiu(p, T->q);
    1038        3341 :     if (T->bb && abscmpii(p, T->bb) > 0) return gc_NULL(av);
    1039        3285 :   } while (!BPSW_psp(p));
    1040        7744 :   affii(p, T->pp); return gc_const(av, T->pp);
    1041             : }
    1042             : 
    1043             : void
    1044        1085 : forprimestep(GEN a, GEN b, GEN q, GEN code)
    1045             : {
    1046        1085 :   pari_sp av = avma;
    1047             :   forprime_t T;
    1048             : 
    1049        1085 :   if (!forprimestep_init(&T, a,b,q)) { set_avma(av); return; }
    1050             : 
    1051        1071 :   push_lex(T.pp,code);
    1052      309822 :   while(forprime_next(&T))
    1053             :   {
    1054      309178 :     closure_evalvoid(code); if (loop_break()) break;
    1055             :     /* p changed in 'code', complain */
    1056      308758 :     if (get_lex(-1) != T.pp)
    1057           7 :       pari_err(e_MISC,"prime index read-only: was changed to %Ps", get_lex(-1));
    1058             :   }
    1059        1064 :   pop_lex(1); set_avma(av);
    1060             : }
    1061             : void
    1062         959 : forprime(GEN a, GEN b, GEN code) { return forprimestep(a,b,NULL,code); }
    1063             : 
    1064             : int
    1065          70 : forcomposite_init(forcomposite_t *C, GEN a, GEN b)
    1066             : {
    1067          70 :   pari_sp av = avma;
    1068          70 :   a = gceil(a);
    1069          70 :   if (typ(a)!=t_INT) pari_err_TYPE("forcomposite",a);
    1070          70 :   if (b) {
    1071          63 :     if (typ(b) == t_INFINITY) b = NULL;
    1072             :     else
    1073             :     {
    1074          56 :       b = gfloor(b);
    1075          56 :       if (typ(b)!=t_INT) pari_err_TYPE("forcomposite",b);
    1076             :     }
    1077             :   }
    1078          70 :   if (signe(a) < 0) pari_err_DOMAIN("forcomposite", "a", "<", gen_0, a);
    1079          70 :   if (abscmpiu(a, 4) < 0) a = utoipos(4);
    1080          70 :   C->first = 1;
    1081          70 :   if (!forprime_init(&C->T, a,b) && cmpii(a,b) > 0)
    1082             :   {
    1083           7 :     C->n = gen_1; /* in case caller forgets to check the return value */
    1084           7 :     C->b = gen_0; return gc_bool(av,0);
    1085             :   }
    1086          63 :   C->n = setloop(a);
    1087          63 :   C->b = b;
    1088          63 :   C->p = NULL; return 1;
    1089             : }
    1090             : 
    1091             : GEN
    1092         238 : forcomposite_next(forcomposite_t *C)
    1093             : {
    1094         238 :   if (C->first) /* first call ever */
    1095             :   {
    1096          63 :     C->first = 0;
    1097          63 :     C->p = forprime_next(&C->T);
    1098             :   }
    1099             :   else
    1100         175 :     C->n = incloop(C->n);
    1101         238 :   if (C->p)
    1102             :   {
    1103         161 :     if (cmpii(C->n, C->p) < 0) return C->n;
    1104          77 :     C->n = incloop(C->n);
    1105             :     /* n = p+1 */
    1106          77 :     C->p = forprime_next(&C->T); /* nextprime(p) > n */
    1107          77 :     if (C->p) return C->n;
    1108             :   }
    1109         105 :   if (!C->b || cmpii(C->n, C->b) <= 0) return C->n;
    1110          42 :   return NULL;
    1111             : }
    1112             : 
    1113             : void
    1114          70 : forcomposite(GEN a, GEN b, GEN code)
    1115             : {
    1116          70 :   pari_sp av = avma;
    1117             :   forcomposite_t T;
    1118             :   GEN n;
    1119          70 :   if (!forcomposite_init(&T,a,b)) return;
    1120          63 :   push_lex(T.n,code);
    1121         238 :   while((n = forcomposite_next(&T)))
    1122             :   {
    1123         196 :     closure_evalvoid(code); if (loop_break()) break;
    1124             :     /* n changed in 'code', complain */
    1125         182 :     if (get_lex(-1) != n)
    1126           7 :       pari_err(e_MISC,"index read-only: was changed to %Ps", get_lex(-1));
    1127             :   }
    1128          56 :   pop_lex(1); set_avma(av);
    1129             : }

Generated by: LCOV version 1.16