Bill Allombert on Tue, 09 Jul 2024 19:42:56 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question: trying to locate other Diophantine triples from certain elliptic curves
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question: trying to locate other Diophantine triples from certain elliptic curves
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 9 Jul 2024 19:42:52 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1720546973; c=relaxed/relaxed; bh=P3QqgQOCmFcYsWlhlJsqtJ2qiEvx77JUBOSSrRIcwUc=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=Dr8fnX1vD+Mf0p/fBE5L2URhkafsvoAUfHzSc+CT3D35VBJm0v6uoVButm57CpGxsZoRuAeuBt17sAfADQy+XMuvHEhgnlT45iM4Ori5Ehnz7U4um1b71ZcMcRxv7n/5yVjmKj0KRVsKWoHn6MW/h/jh47dGm7aP8WaAqgbgRyClYtv7oKuB8t3NNp23feGoHqo45SZ3MP0U3U3vXniN8pOG6GUpG+5GjXmY+VjH+stqbhg83huzaZHeGUlD4uXWpN8V3vQEXOt6TBYA7tS9uRAy7mLo8iDTTGWLuZhiCsm5jgy29JEMBcu4djszVV9hRlMSnBX0trtM+icwTKKLR2hgF88t7UkWoihPb+XRYCN1WZA1ZbJJvtQaKZskDJ+zrwpnvaK0PdlCBRjecXw4DRurjPusqCO36fSpsQo/puXdlQUigUWbEXFEsNJv4gMqkW48KD7vl51PjkLiDwpaThsbKP0N+4Npp+DWKHng9N9AQz3w6p5v0DpmVDawDz9BG3rL9PdeyYrsTB5pA3MhAX8a0Oc0q8bR2swhtys1U+zH9dR0QwF0ERV1BPX93SHDxbr0klBHgdkw2dk7opTdvmb6lrETFy4GLL8SEbbQeE/S75RRmokidrKbfxiGr9uxGpG8Bp2obFlvA0YDaS91aDUJbo8C6sKp2co4FoxXU1s=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1720546973; cv=none; b=PaYKQP0MgdWT1KOYK/ZQmZf3f4wAaaVVCDpRFyDqjwPLXkd7Eub2fGX9DsFqDHEx2EPrhJrnyWqmiyLoEc4xxJuHt5FH9dZqTt2sG3D2TvBnSfiKqKx8PqT2/kfDg92y8tIuZplHODxEAYKUCh8rDsPiadFaqri/RRNdTsLsERqvHl74Z0Zou9zc/cQ/scjMPgPLNbovFg8BpPhiJk1dPuwrYLHJ+1dFvK7pgMJkf+7tmu2MW+GY4LH8qQ8TRJzxxwxfwSXLLkoWhlT0eQB7xinELkR77wjmnqrpXrnxr0x1PZQRh39246zjl7Wg1X5RviXkGBVR9xY8A7+9l7T/HFMgLHg5816pXJQ8xAfjt2PQO1v1hERdGowv5hEryvA6B58+m862qlHvAXua1sTQB/mMvHBRjx83Ut4VLof6iIiiYieArgQz0un4NWrh2lkPR1OguyTbu3ptTxBsfHNxfEqtNgdoLa4rK8UvXJt0Vt80xIYqgxECEfKswYH5DJbw3/w3U7cAYj0AZM0YIVcT+YaUQt3GbAlhA3B28NuLeU+SFS1BuJVocnhY25ILegCrdlzO1tT7DbpgopoHqmhXgvcEMxhy3K4vjPJutcl8UPVWsRSiikAqYD9tM249LQdMl0GYivLgLBRwW58I4BlvAjkQYt20+8Znqjck7NvcvkI=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Tue, 09 Jul 2024 19:42:56 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1720546973; bh=P3QqgQOCmFcYsWlhlJsqtJ2qiEvx77JUBOSSrRIcwUc=; h=Date:From:To:Subject:References:In-Reply-To:From; b=cJcCmCQjL82GQIyOypmm5wubvEEfTI37NIwolb71BwTvK+WXxt6Ri3prPc249TIGq olryvqnZtBiEwj00LwApo+Zqlx+5g2KX90z3bgqebE2PdtpDH9/er50GCPPbLVlFZY NZwcqZVJKUKbODKY67qJ2TzS99XKb+KRwL8wxIvIvX8v7gsQhveIWtbPxf4CmQjfpI jzlojTKnD5yLqFY6lJOrczPFYqSS3NyuiTNl7iBXYPCFP10XcnbMng5A+BtzgUT7GR +EtDjW/UgfrDq7xgcDJnhI9k585SddlFybvsuYeMDbYaHIXX6kkRy4mkRS79ycobpB qB/g8qLmn4F+gDeQux3b2FyDPjK3mks3eVJP6+fK0Cvbm+4NA3q4xjGawflS/TprVz UOiltmvjP23y28qLA4bqUyeCvVIWFvImNkdN2gHlDNm3/ORFtem3dUjKrO/Ucl4U/Z 8cG4JpjZHjJFk5ATd1br2IPcVIQ6T8GsflqhYnWUY0LXdD5HIHk0kDYNrwsgMXGvl7 cVtAkaMgf1mB+U1YFgWaPJ0mFEMeN2t4kwJF3ZeNreQTrYMHB7fL7lHHIMV2pFtck/ PaHu6F58rPcgVWC/DUU0rjf6b8L85xdStvkz5tlbsFqJ0LMj0RebYdqULqXoelw9SW yJZaMPAR2EI3Gh3buB7DikMI=
- In-reply-to: <CAD0p0K7Zoxy1venOSVzV2wZP=ffM7fBbvqTZupBEtkd+pZ3XhA@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <762956a2-fb66-405f-87f4-66770b2d3deb@gmail.com> <71e6bf0b-c054-430f-9881-5e919a0eeebc@gmail.com> <CAD0p0K4hr-g9PuVbPfzVZcK4KQVP8Ba29ZjLovzt+XsXopWP=Q@mail.gmail.com> <Zo1YYBAwF3eUZ5dS@seventeen> <2c7cb4ac-e32d-4299-a305-3487d21109a2@gmail.com> <CAD0p0K7Zoxy1venOSVzV2wZP=ffM7fBbvqTZupBEtkd+pZ3XhA@mail.gmail.com>
On Tue, Jul 09, 2024 at 05:33:53PM +0100, John Cremona wrote:
> (briefly)
>
> To get a point on the curve you need the product of the three factors to be
> a square. The stronger condition that each factor separately is a square is
> simply the condition that the point is double another point. So getting
> one point is enough: if the separate factors are not squares, double the
> point!
To fix my example
E_triple(a,b,c) = [0,(a*b+a*c+b*c),0,(a*b*c)*(a+b+c),(a*b*c)^2];
E=ellinit(E_triple(5/4,5/36,32/9));
R=ellrank(E);
P=ellmul(E,R[4][1],2)
F=ellchangecurve(E,[1,1169363/27075,0,0]);
[A,B,C]=[P[2]/x|x<-nfroots(,elldivpol(F,2))]
E_triple(A,B,C)==F[1..5]
[issquare(A*B),issquare(B*C),issquare(A*C)]
? E_triple(a,b,c) = [0,(a*b+a*c+b*c),0,(a*b*c)*(a+b+c),(a*b*c)^2]
? E=ellinit(E_triple(5/4,5/36,32/9));
? R=ellrank(E);
? P=ellmul(E,R[4][1],2)
%4 = [1169363/27075,-83444186119/277789500]
? F=ellchangecurve(E,[1,1169363/27075,0,0]);
? [A,B,C]=[P[2]/x|x<-nfroots(,elldivpol(F,2))]
%6 = [42422057/6727140,14766269/2147380,44462068/6418485]
? E_triple(A,B,C)==F[1..5]
%7 = 1
? [issquare(A*B),issquare(B*C),issquare(A*C)]
%8 = [1,1,1]
Cheers,
Bill.