Bill Allombert on Tue, 09 Jul 2024 19:10:31 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question: trying to locate other Diophantine triples from certain elliptic curves
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question: trying to locate other Diophantine triples from certain elliptic curves
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 9 Jul 2024 19:10:19 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1720545020; c=relaxed/relaxed; bh=THfSyr/yQuoMa/416+m21aaVWiSekxQneNXaPrO92PY=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=CWNiDDqtDcCKeg3WH8arWPq5ZrIVP2ZQKLthCObSTdzH8+0+khqDRozoGFHvuZnn0tUPG7dyH9QMktHL0AdwwukNF0iwSOjzfXe/qjcIgj5BZDoqoCKry3L+lOdRh7oO+GyFQMkfbT5Jx2USA4vtcDCSTYvP68EkdKRl4/h3hfJ8mJHG+l+W2r0DYIDm8d+CfQEIg+VvYK1HvAmjkUFHhP0j4KpHlnGuKSxwYW39H4OZJpHX+7TglWSURoYEm7hrwZ+9qiy/VKbJsbMgDCPVTLDeqQOuWlS//T4H/GTuq/VBxbjs0gIaiA8gzyuLscHwL3V5079vDw1XUSZm9krUQ+QcYUTswGrcrzp2IdrrpXhk+SZvqVg4c3284MV6PBBMhfGZxv1QZtLkHbkrZCzYJiQUpYth+kUC0oUElspAdy/v8s2v0iIFBXk7QFVs2YXVjwttMLuqNRZ0pfcRVAgb5bULgDKVxZlkqvjpAlKhW0QCbVNqJ4ARSMRhCF7ZHbf9VzMzZ5LF+tMPweQzKjVlzuWNhYXkNXfkpn1MmHoBqzYdWDtETUisNEftRdZhLqAN5mXuJVnjCj4WHwEEBXUDKgSbSecGQ4Ziw0zRL8tBEvrWAXDGmkMkX+TS9OnV46pcBi927LOTkmKFP4neC8VUptFkbIhICuJVPuGRsxOgbLM=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1720545020; cv=none; b=b+oeUeK1C0okzlce1bTI6wsNoBOOS/Z9NuNAfqXnGFJkmPrZsNmFhBfSQDMX85b09A7tM7xiytRmkhJl9XvY2jLnz7AlIDvh3hxYohnD1IbbYkBu4OHMs2BQvQVEQD8/4ldsJqoXEdZtus2rM6MP4XWNx1WeTZc8RkLsVceZDHLcngNCGq682GHM9kaORKM/8z+X3s/RbJmLGffFBscODoK8Ucd84+jurN7u9JtrQxdBaQOIkoyT3gj+yxdiba8YWrti1zjJtj0mE6fGz9o6SWxv09JQ0f/REsykhTAlKMoKPFUtHfeBjofhJm0nr7QLolTztncXip2PjPxb4bTkTLmrOM1NOvhp2sjMbKTWJia9A7ki5PGaRiwMZgMkH9EQ7KU0gw6jCRCUIM9BkKqQztnt5Elt3aa8ZpBLxrhDsHylByyOxBRRJaC4s9HTWwOI0bCUMd2fPL7o7P9HTesl8LJC+66oON2iC2wa/ySjhPa6yAkV0cYjtuTkcwphd8F/ZAwIl4YHnc/FHqlbLf1Q3tsWwF2+wYZXzC7ovltLyk/1oswdAyr3EjaffH54+wPpgciKe34avF/RUATsJkqHrleKsfI7pPmq8JeO/AQF0yYmwJrqZ8FdA310mx0qYYjSA+Qxja/RZeWSoCjCoN+hYE3SmKbMtjc3VsTMH1+Wtsw=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Tue, 09 Jul 2024 19:10:31 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1720545020; bh=THfSyr/yQuoMa/416+m21aaVWiSekxQneNXaPrO92PY=; h=Date:From:To:Subject:References:In-Reply-To:From; b=uJY5S2c3ecbG0xLVZlg6xsiUxMh3ZYpK8XXVD3ySxJ7prNcHCm9QFpLx0alvv94hW NtgsWUbRiLNLmF/JICWk7sAZv6VhfSwt43FQ3ZdJ6BFU/u4RFGwV7HeZsd8iKKSa7K fadywNT55yU2+sHCSB8VjEiZH4jxwxGL288YjvfKjHHkgB+jaO1g1TydbHuJ2RCgo4 hV/9ZSSA+AlUDN/my77B7+bp8aZ2xLBDnZtBEsKTokgPjuTuM0BI+Rp437Q2rZ3uy6 kweWyFbKmTKqddeXng8gPTNaU8aGDHebjou8ygouekCvxNNGVlAd1FVOL8PsvBBxyJ U3xs8tlInA3r4lMVBpUEL7aFoDviSo/m5lylYSBVPQESrmcTed9sefo91DsUCpGHWy LaDy52FukgtwfSBPdvgflKVDVx4EiS516+5X2lXJgCfHXHqoiBgL3ATf65pUw7fNcA 1Zodz55h8tyfhuCzDiATHzzFyNr5gat66xzuSXsAIp0qPZaY8a+OkkG3zz8ucfuA2f iJlUWJ8v47SRXCbH9YTz42lbHC3H965k/TTmQ3+beuotm1uUrxtJ+gDtG15078YfFe oEcMwBCoO7IbcOzDuTyHky+4W784xTAq4KHA5xCeQdLserIG1rrIxyHBJN14t+s9nr HalfXyHcaCGjGj4zwGUtZZr0=
- In-reply-to: <2c7cb4ac-e32d-4299-a305-3487d21109a2@gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <762956a2-fb66-405f-87f4-66770b2d3deb@gmail.com> <71e6bf0b-c054-430f-9881-5e919a0eeebc@gmail.com> <CAD0p0K4hr-g9PuVbPfzVZcK4KQVP8Ba29ZjLovzt+XsXopWP=Q@mail.gmail.com> <Zo1YYBAwF3eUZ5dS@seventeen> <2c7cb4ac-e32d-4299-a305-3487d21109a2@gmail.com>
On Tue, Jul 09, 2024 at 09:15:38AM -0700, American Citizen wrote:
> This is only the first part of my two-part question, the other was working
> with the isogenous curves in short Weierstrass [0,0,0,A,B] format to see if
> they can be transformed to the E_triple(a,b,c) format with [a,b,c] a
> Diophantine triple.
You need your isogenous curve to have full two-torsion.
If it is the case, the same trick apply.
Isogenies of odd degree will preserve the two-torsion,
isogenies of even degree usually do not.
In your example, none of the isogenous curve has full two-torsion.
? [L,M]=ellisomat(E,,1);
? apply(e->elltors(ellinit(e))[2],L)
%9 = [[2,2],[2],[2],[2]]
so you are stuck with E.
Cheers,
Bill