Bill Allombert on Fri, 03 May 2024 14:05:36 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: h_x of points on a rank-11 elliptic curve
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: h_x of points on a rank-11 elliptic curve
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Fri, 3 May 2024 14:05:23 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1714737931; c=relaxed/relaxed; bh=q/xgo/eUzBhMCD/ijXtldVGM0jFBIy1PKu2XHhEse+k=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=s8L5ed7RpJmnldw2+MakMhxZ+7XzeDfkg59ejseY+Z7XMLpjEIjH8ANfrEsNxBhv6HSZm73EuLLdu8bkrbXxQZXDgsqs5st05IMyKAfF/IxFUCINdiwNuY38ahiA+jTKKo4x8RFlR234e/CWcK0iLFr1BQBH6Tlqi00COybRu8Bb9gz3PX7h+rWt5Ke/aJ54wA61bPM/YlsSbzyCXlHVVDpDKZUqq99Rgzkw6sJjx6Og2ViqmoOsMt5LZkPpxURnPoq6ftqR/iYE74n/jzIpcMS8bJWIXtuPNWqJdut8N5JKCBNDBP26XLrr+zNntpYPqvE5x6J7H5lHhztwU4nSRRitPZbxNUJpZm0wowDq0XS4/js9e5nIRxJw3M0rRGi11STX2uD0Mwj8fyaWzBbLwbEqhAXXkttwHVDB4llqvqB7KCtEQLaztl0s/AkWzxdoTovc8KuH9egtxVOArGXIGg/bDLAVxOUuYaNVkQQR17Nhvn0POtZQ/ZCo40hhd/MfG/V2bisMCVknH8hwxws8/YGPu0hqWIZmvxCT7W73C4PqMu0qwRtW5UYseHJ1CPpF/oP3/9x+7/8k6CmEcfdNdHYpIITn0AtqIL1tUKwAbgqkcf0pk5VS4iWKQwmCIi0bVWhm241Q+cNT0hFDAojhB0mjZnBfij2f+mFLhNbn7A8=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1714737931; cv=none; b=EoJ+yBk4f+RchyN56Y0suML92i8hYMhQzmJcd4O6yH3AyLDH+cA+R1N8bVN8XSb5Uv75rm8f5Ji6zvoiv0cYPZU/OOPOC3M5UMu/OeWCuk0jWZDXS6xLxeKmS19HH0W/ertmaVgeO8h5uoI2YxEOWWVOiwJ57ZyHF4WcbIYRmHekm0Q/x0jQ1LwXuPImyt8AoyPcF6auoug8g7LOmqop/HNUVYrZxntJ8YV9WENyv/VyDph/KlmpgNeksQgsK/Qp4SQ1Joq2bvkzD8Fk2QcuyLAgwpZOhRbl+/tprDneT6sKQXrB8uqhhChlDms8Po7HF1xbdY+B+nW1spmiH26m+IC28aLlk/u+b2GiRsDdtzU7N5+ut20xtmFEdlwBhgK63+9+ki5PS9Kjb6wZfxbAtSmuUiJDF3XwJWFiJAuA27hZ54eohreoVEQSxmF8qyCIRFDkVKnyjeUbbMjZKdrPF2QEb0bWh2CmWTAU2q4Ack6X1yjajXZv+3sRrSQHgS1OpK1oRSlh98o3kLgtQm+YRqA4DbjhuMZ6TQY+xlCT9LHnevm+sFDqN4lWc9nkepezs9TxOFtVb6AYlHFZn6+/3DBvMf0kV8V75/U3dZ9/o2K5e/WvUTiE+VPTQWUVZ6Il875JkBL+/h/w5dIlt5bGwYuKVfdZjxOjjs67nwioh1g=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Fri, 03 May 2024 14:05:36 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1714737931; bh=q/xgo/eUzBhMCD/ijXtldVGM0jFBIy1PKu2XHhEse+k=; h=Date:From:To:Subject:References:In-Reply-To:From; b=e3jfZH5ZOK19njzCEtF/yLu+Z9DfWX8IKiX81Cgd4FbDhqlYpJTPML/nZ+VChDklm DZfg13uCnLAtteDRgj4vQiTjOGxJb8zvUvLv10tqYfpdlsKhDS0OsP7OBTBIJpdd3q qU6E4lN0n8pzulGdTlrIG0s7GPsNXCrk6Q9oHC4HNUi7bRh4xH09Sc7VqMOcMz4Ign F83NLTqKB+sQ4ZrYvSdtHstaRU9LK2dWaYs5Hx3/MfQzXoJouLLjiMz73SfVQfJkoq M+tKeKondlRcxRmuU7zcsGqcD/qAO561em8x8EhRv5y8Qsh9zHpxUbqRjsX2AJaVQS QdUiK6TPLDfZFkwwfJ9Cxgc/b5kH3R08MX/BwykY+9/pp/ZOk748oeT9edXx8oecIt RW/QM6evkKn160jTR4II1XCxrQVEvgnrMp7NoYNmuuARcvSGM9Miv/6S1YPv9vYmxE 1wdaHX5ZD7q6F+yYWg83CVlURT6feloEgHovvnyRRMERtyzi/J6cLIgqo7Ednxaurd VBYkLnDaYSm26XSaInDTM1UmJ2+VXjPlDZoqidmzBzdOxAaNrjL0K+9QxYNo8ISlQx OGqQASD0Jyhx3VvcYebR2TJ/N4DtbCLDmeRimnrFQBQVlx0Hm66zF2U+wU7qm4li1j DHh1XzdyFodWWUYz1p5F5LUw=
- In-reply-to: <685BE5A8-2A92-498C-9EAE-F9A0A2B49F4F@research-systems.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <ZjSc/pL8ewure6OY@seventeen> <685BE5A8-2A92-498C-9EAE-F9A0A2B49F4F@research-systems.com>
On Fri, May 03, 2024 at 01:54:39PM +0400, Kevin Acres wrote:
> I’m interested in what games you can play with 107122676734733201
If one goes to the OEIS, one finds this page that you conveniently filled:
https://oeis.org/A173795
which tell us this is related to the equation
y^2 + x^3 = 107122676734733201
which by setting X=-x, Y=y can be written as
Y^2 = X^3+107122676734733201
So we can try to compute its Mordell-Weil group:
E=ellinit([0,107122676734733201]);
R=ellrank(E)
%7 = [12,12,0,[[201652,339591753],[13704427,50734146678],[33568399,194489678280],[-218856237137/567009,95104786928876776/426957777],[-609969146/5625,137253737419433/421875],[366673/4,2627765241/8],[7030108/9,20628557171/27],[15840274/25,75155457393/125],[633111217/16,15930169162647/64],[3710170714/24025,1239583908216063/3723875],[5405262670/5329,417296243200533/389017],[17169987767/3481,2250861276375248/205379]]]
So this is a rank 12 curve. by setting
Pvec=R[4];
the same trick applies:
M=Mat(apply(P->my([X,Y]=P);[X*Y,-X^2,Y,-X,-1],Pvec)~);
V=apply(P->my([X,Y]=P);X^3-Y^2,Pvec)~;
matsolve(M,V)
%11 = [0,0,0,0,107122676734733201]~
which is not surprising.
Cheers,
Bill.