| 
	Bill Allombert on Fri, 03 May 2024 10:15:33 +0200
	 | 
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
	
	| 
        Re: h_x of points on a rank-11 elliptic curve
	 | 
 
- To: pari-users@pari.math.u-bordeaux.fr
 
- Subject: Re: h_x of points on a rank-11 elliptic curve
 
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
 
- Date: Fri, 3 May 2024 10:14:54 +0200
 
- Arc-authentication-results: i=1; smail; arc=none
 
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc;	t=1714724101; c=relaxed/relaxed;	bh=OAwTTBlSCp7tS/24rmtQ/7Ncf7Q3BvfcmK5X8YaN/5I=;	h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To:	 References:MIME-Version:Content-Type:Content-Disposition:	 Content-Transfer-Encoding:In-Reply-To; b=RukFKH64TUTKqVdI6dRpMquPYElC6cWV5iPCeuimcuxTZtediJ2nflmtJ4WJUdL/9/ks2vR5d0sMb1+6Ch63i9rwVpYLn5lgfcoL810XdWeAcHQ0cGEO/UyFSNRI4PH79KH9A/9QPApU2RE1Rl+mfFpjrpTdEH7VTWDRTCeb6GCtbAQedjcxJUidDLTms3nL5KKK7bV9gfuZiHiI3T+vEA9L19+JCmljLqpcNO86+UAZvaMiwlCqgirjlW8ilUKT+PZ2lXXS01Sw5YIC/ohNk3qvbSqAp8ZvHxoXoCX0dFsa9MD3AO9wFM6GvwlNxK4L+5BpCe1629S4gwjZfayL1SSyuPR4U/X+et9S8V68Fn8sjRIyZXOgOhcGCzwngbAIEhEedVkVTnH7CBtY4x7WaA8yiBbE0/54urY8I3bhZoDcvk4x1/0L6dK7RJ7UI+64EqCeRfU0zPt3WNRE8HE3l02JrVd87hlCtOuszsDL23al7aYsNOiEkY9yI8Rk3UCTjB6ZZujwhijKDNrmc7ouUpBPaqHNB/ucfSDqs8jGFKan6OFK2V8MWGoCJHTKQ57w5Q2CRfHeF91UtF5a94O+7MWItpUE4avKmQkhHSIs2XrwdugCBH6K+dkYLI3ocbhtDxQvEgcnjLRP7AjHxi+j0jRbyqab419149eXykm7BnM=
 
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1714724101;	cv=none; b=RJCWlU9ntZulpA54NTyhNHjiimy/3+H7a2ytaksiwsPhoJTetTeGBCV5MGaQ0fpT7F94DAkwiIVbD06H5JyMbsVsDrhoO4qMcReNMQq6yr3Zi66657MUC0buwUJ8W/ZoYa05bGANV4JHP5ZiaXoZhMfvDDhqgjhOzol2vOBBSfYRU1MCWip/maw54KkrCrVeOnV8ar9Fxi8s2k+6XqVZ3eRUVDrWZWbZNwT3Wr5aDqvP7B0OE2wKQWU2IG6LUvr3lk9leKkkjbfFAFG0TWb8JoYJqgrkmhTa/fFE+oh5Kyqy08VPzDam0LfcXaU+odKjkhjX1HtpkYWYahdxiK5Nsy6PGRmzz++KRcjW8dUmEBFrn+cYaWK44WgS4R+oZAuuheJA4iX+Vr51cGSdEcx6XPQZ6celoMwbGkC7IwZ9EcAW7bzOOZ+pHICOFYILvfaais7wK+cNh3fYiuhSHWQ36v5YZ4wy5FUu9JhYV65B41SAN4Yie2X7/JzETiF2dHl4YdCvQiJqz+eeWrV7J2I3QVg7J2f82KsSr43D7gPN0E9H1QsiotaS3FU7g2M0WRnJkOaJVphPHHg5Zp7eEFkDgpTUtDdlSxr5ozuMvDeLuR2GI6ESnsGJ20yfNc4//DuHWn0b3q6TVr+uyn2yJ1hljf+YfBT3DnkjjdTcGYGWLPA=
 
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
 
- Authentication-results: smail; arc=none
 
- Delivery-date: Fri, 03 May 2024 10:15:33 +0200
 
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr;	s=2022; t=1714724101;	bh=OAwTTBlSCp7tS/24rmtQ/7Ncf7Q3BvfcmK5X8YaN/5I=;	h=Date:From:To:Subject:References:In-Reply-To:From;	b=FBmoS5Fy09MslcTvNUJc/8hhrriKhfkHgPWkoIfd790PUGRK+uiFl/1anxA4AynzD	 JdL+28EqByoOnYM1mst4N1YzFVQZ1X9dKLE/cL8oYlWQoAtVAxbAGsi2rOkevY0lhj	 ixtlcuowYUA7EswkaocTrzALZA2FAlqy40R3FhSLeAo0Ev2U84LJuL5SqHkWbG36LN	 zmQpa3ZU0AnTES4LTSxMaAqj3wg6ZBjjM3FnSm+OY7pbeVN/3QUX/JQPR1QFwCNfZ7	 gMD9kTE/4z61EvbZrVCaOyJid7qsPK7FA8ycoUtzpAMSFqUbTSZU+QU5nNpMKulpbl	 s6MKCzDAJZW7Lt0QEGY2EtvKsFuA3g3WSwPHOCLCnpJHhEFzyud3nm6phjafauBa7L	 U3QOR+8DFsbex651kyhvIy1vpOPVL+r2cD46stiVFC9ixdYax6HlX7pGLdgedY8t+B	 6u79ThAlGvNJZnTYreIqP7+yq2uIeBWRod4lgEq7DvrhwXc5Hg9+QhH+OfaDkW7FFG	 U5tKnxLV35vTLC3lqjfEFDFhnAJt1wr/re3FGHKAnuO726IBEO8BjL1Ee3TVQbCv5Y	 DOr8hBDtehfDjwUUb4ZAmv+ojdu4885Ofas+DLmPKopO4LxWnh5dhewv25gyJida6S	 xCc96vmvVcQppHhGmthuw8zM=
 
- In-reply-to: <CANXmBjyzR=YiaCzXd-jkc1JxAh8ZGK-B8_6AknMEogJMC5Kn+Q@mail.gmail.com>
 
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
 
- References: <CANXmBjyzR=YiaCzXd-jkc1JxAh8ZGK-B8_6AknMEogJMC5Kn+Q@mail.gmail.com>
 
On Fri, May 03, 2024 at 12:04:54AM -0400, Charles Greathouse wrote:
> I'm trying to work my way through the paper
> https://arxiv.org/abs/2403.17955
> and I'm at Proposition 2.1.
> 
> I have initialized the elliptic curve as
> m0=13293998056584952174157235; E=ellinit([0,-432*m0]);
> 
> I tried to use the rational points found in
> https://arxiv.org/abs/math/0403116
> where the curve is apparently defined as
> E=ellinit([0,1,0,0,44182596082121121317135170025680399046545625711306]);
> and its independent points as
 Pvec=[[-30156002278649820, 4093799681127459731025817],[11364087102067560,
 6756491872572362690626342],[-20835788771691894,
 5927660006237675713476241],[1134264920569989390,
 1208031685828825118221478017],[8907565209691176834,
 26585114133655761890666064910],[111849199886121334,
 37992674604901443769570910],[11724873521668020,
 6767159346634715672034457],[-138658831412368575/4,
 12719819443574268333325811/8],[165971060901522240,
 67941788876402816577138982],[994768217796990,
 6647073075327662243966017],[532896351059436225/16,
 576457310785324883248677823/64]]
> but I can't replicate the result
> max{h_x(P_i) | 1 ≤ i ≤ 11} = 76.61
> and so must be doing something (several things?) wrong.
You should use a variant of my little game!
M=Mat(apply(P->my([X,Y]=P);[X*Y,-X^2,Y,-X,-1],Pvec)~);
V=apply(P->my([X,Y]=P);X^3-Y^2,Pvec)~;
matsolve(M,V)
%17 = [0,0,1,0,44182596082121121317135170025680399046545625711306]~
So you see, the curve equation is not quite right.
Cheers,
BIll.