hermann on Thu, 22 Jun 2023 08:20:08 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to compute "Mod(2^(n+1), n)" for very big n? |
On 2023-06-22 07:30, hermann@stamm-wilbrandt.de wrote:
On 2023-06-21 18:27, hermann@stamm-wilbrandt.de wrote:That is cool, eulerphi(n) = eulerphi(p) * eulerphi(q) allows to compute without factoring RSA-100. Largest prime factor of eulerphi(RSA-100) is only 26-digit number, while p and q are 50-digit numbers ...
...
RSA_numbers_factored.gp rsa vector contains prime factorizations for p-1 and q-1 for RSA numbers up to RSA-220. 3rd column is number of decimal digits of biggest? znlog(Mod(2, n)^(n+1-d2), Mod(2, n)) 28775177062023928913461369238354205970422561872 ? ## *** last result computed in 11h, 12min, 15,497 ms. ?? fact(spq, pq) = { hspq=spq\2; s=sqrtint(hspq^2-pq); [hspq-s,hspq+s]; } ? fact(28775177062023928913461369238354205970422561872 + d2, n) == [p, q]1 ? ## *** last result computed in 0 ms. ?
prime factor of p or q. Grows too fast to be useful for factoring. $ gp-2.15 -q ? \r RSA_numbers_factored ? ? for(i=1,#rsa,\ if(#rsa[i]==6,\print(rsa[i][1], " ", #digits(rsa[i][2]), " ", #digits(max(vecmax(rsa[i][5]),vecmax(rsa[i][6]))))\
)\ ) 59 59 16 79 79 21 100 100 26 110 110 50 120 120 34 129 129 63 130 130 39 140 140 52 150 150 53 155 155 69 160 160 43 170 170 83 576 174 40 180 180 79 190 190 75 640 193 79 200 200 92 210 210 82 704 212 79 220 220 58 ? Regards, Hermann.