hermann on Wed, 21 Jun 2023 18:32:18 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to compute "Mod(2^(n+1), n)" for very big n? |
On 2023-06-21 18:00, Bill Allombert wrote:
You can speed up this by doing addprimes([p,q]) so that znlog does not need to factor n.
Only if knowing p and q, not when trying to factor n ;-)
But the cost of znlog is related to the largest prime factor of eulerphi(n),That is cool, eulerphi(n) = eulerphi(p) * eulerphi(q) allows to compute without factoring RSA-100. Largest prime factor of eulerphi(RSA-100) is only 26-digit number, while p and q are 50-digit numbers ...not of n.
$ gp-2.13 -q ? \r RSA_numbers_factored ? [l,n,p,q]=rsa[1][1..4][59, 71641520761751435455133616475667090434063332228247871795429, 200429218120815554269743635437, 357440504101388365610785389017]
? vecmax(factor(eulerphi(p)*eulerphi(q))) 5880369817360553 ? ? [l,n,p,q]=rsa[2][1..4]; ? vecmax(factor(eulerphi(p)*eulerphi(q))) 134611158882680922107 ? ? [l,n,p,q]=rsa[3][1..4]; ? m = vecmax(factor(eulerphi(p)*eulerphi(q))) 38273186726790856290328531 ? print(#digits(n), " ", #digits(p), " ", #digits(q), " ", #digits(m)) 100 50 50 26 ? Regards, Hermann.