Bill Allombert on Thu, 27 Apr 2023 11:52:53 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Recognizing numbers using PARI/GP
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Recognizing numbers using PARI/GP
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Thu, 27 Apr 2023 11:51:38 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1682589090; c=relaxed/relaxed; bh=G5h98YnivSllq6O8Jn8KLFWWQDS9SJUaRHifJunbR78=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=poK99I0G7t6zE2hzUN2cRpsM56GdKCjp4dmGDusd2nG0aaMmvkVjcdW3rYuZAP6tJoZQA9hcQTuGDgdIx+WpYPJ40Go50sAslflHFTSBBfmIB8lJHCtq8PBOmBFe4OzgbH6XxfwOK2jnKoAdQbwLtcPzCkaoySWUfiA8V+3x8iiWK3ziQW6nqbqdC545pKpJnBmUub/ca6V98ujn5EVF8IHo/UeTJ/zD5dIrznc9RwhNWM0EYXqd4t52w7fZTvhuhCfK6sjQqqY+kehcUqKvEp5cdSK5/AYm0jT76He8LsEhdJMjJ5WDr5CtxQQASTaUppdBAQPukIf3GwBpPvtJgLOnpMrSCs854KF/jILsMRFJjjb5TwM6D8ekgiUwrYZuSqwjA2cG+Vw6UuQyID0mOLSaOuh9FsGW+buSZ+9T2LxgGm3/kCALoIlqtwDo5Yglmf+rYf6xxfKgte3yQvnXRacru6s249l7LIl3QEnmTrwXfqX+w2T8a0tJ3s5GpPyKyHyP7N7J1T+qDNvHDZb4S4ph5VOyo+HaYBcvy08tAAM3yVnK9JcEcGgzHjbov/TrHXyj3+LNm+maSK4aBrkNPVysh02rBmU98WXpmEY+oHH0pWJzZUK935Y9ScCAX8+Kqxjex92k9RFgKrnyOeAlYqnIAYFDSYCof6p2fOjzThg=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1682589090; cv=none; b=t0Pv7HBnYl6JVudaV8xPEL+2hmsqqnUHH6BbgpG/2kILGBlZ+wNL/MFOFNjaWfqi0sNRRb9fRzTqgqhgExpVzxsfTBll43ATa9icTCqhNy+MUZbA38ZVoj0Y6tJJn5oCrom4l5L5NexGvQ5H++sB/tSnRsf7OnuA/qUPdWnsjvyLjOnBiMJmMpsu2WWthd2GJlVO2iXVgJQ7BQ+MXQxJSFxIeeFZOpW/jBjT80A+wTM3dxy3CgyCAMkS54jRgynm5cTmK6Lxv28HkZ46YkTCooc6GsTd1l8twxpNhi+mnTRd+0YTXwIcJ+rwFb/oBiwF1xPo8StH6rFS5JNWdm31V0GGlrOQvHt9IH/BiBB9wTiwVLpN4OmHftB+9TFn/7/Gy0REbOMZIHsO4TpU3mQ4thN6J+zZrnWBjcG8LPuLLybwxHmIHROlHIItbYva+i/wr4hwf2Ok78vqK9dZZgtfPxVP0/2IXur7QfCYdaK0XJTt8o3KAr1IdskcJfmjYX54dRM1o+mcEV9toe/clRhzefVgckO23KBo1A3RxetYaL3EAqzghixkgUpjm1t2QtCPzVs4AUXZuPe/NxxkNtOPquiAiRtrxPaoaAweMWCw93zWCNGo7LbgqE1yapIiATqfgkxhxJ9hlayNxdggEOUdQMxkUkmrbqMYlJDuO4DKfd4=
- Authentication-results: smail; arc=none
- Delivery-date: Thu, 27 Apr 2023 11:52:53 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1682589089; bh=G5h98YnivSllq6O8Jn8KLFWWQDS9SJUaRHifJunbR78=; h=Date:From:To:Subject:References:In-Reply-To:From; b=MbHiqF814suZTpVAo8oS+Em1EM0zXksef5kUcRKvXEyE0uuWfI7k+dTSIU03Bvqv6 YiR8SV8LKt19Tgag+djMLup5U6plI0KbZqFd6CKBea71wVXVL6IzM0+gReIyzkLoOa t0d0RXSXV0e70fE6HyW2m7cm4xjlM5DFAppaDuykctnihssjiwdQwZ7a7+jTdZFxPv 5d+4aVZdUKxFxK+DN/YhHeDcNGRv+06g9UxaXATAPSK+ZnJ5oSuyQVmb5BurSZSu1g iyr/yrZPcyy5Y2A1eTyJdZfi1bhREI2CzCLtJ5hq8Fj11cWv5cggYDbB4T4GI6b5P4 4wFfA9l3QH48eBsLiJX0sEGsuG4uRMt7VqQ0PKmPkxRZ5wqw/MSJ5Hm26yILT34Xh6 gq69noD9pE3btM4rHVX1Y5HFUxwxCp84XPlEq2N+RJfjK5/JnXUYHFlvxDluvjEzOk d20LJ+6rmPJLtAm4t4AnpEKh022oxMKuUFnKw48mpEsTtDhN9nnnZH+66qEzoXlQhV pjiTsmxyxTe2RQ2o0s4xLyIOlRJRfeNXCMbAwNSr9jtNeyQQPWEkAED6VONaeAw8Em J9a5CHHDA6WlUadPrZIInqqgM+jUN0hlDY0wH6nFvg1h4O5XV37l1pXy4VM4mZIaDP 9ZJkYpnn06pAaxKbtlkJ1Z+A=
- In-reply-to: <ZEnBYWlZ8q1bxGfE@math.u-bordeaux.fr>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CACESMjKxOVCFG75pZuwdyH+TsJcznjOz6QvL6NNGCyRG=8juVQ@mail.gmail.com> <ZEmc1SR4Thhp9Wxe@seventeen> <ZEnBYWlZ8q1bxGfE@math.u-bordeaux.fr>
On Thu, Apr 27, 2023 at 02:27:13AM +0200, Karim Belabas wrote:
> From Bill's first formula (and Milnor's proof of it given in the
> Wikipedia article), you can express this in terms of Lobachevsky's function
> and in turn get your expected relation to Dedekind zeta function:
>
> ? lfun(x^2+3,2)/zeta(2) * sqrt(27) / 2
> %1 = 2.0298832128193072500424051085490405719
So you see it is a multiplicative formula as expected, so you could find it with
? lindep([log(z),log(lfun(-3,2)),log(zeta(2)),log(2),log(3)])
%71 = [-2,2,0,-2,3]~
so z^2 = lfun(-3,2)^2*2^-2*3^3 and
z = 3*sqrt(3)/2*lfun(-3,2)
Cheers,
--
Bill Allombert
Ingénieur de recherche en calcul scientifique ❄
CNRS/IMB UMR 5251