Bill Allombert on Wed, 26 Apr 2023 23:52:54 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Recognizing numbers using PARI/GP
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Recognizing numbers using PARI/GP
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 26 Apr 2023 23:51:17 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1682545869; c=relaxed/relaxed; bh=Taqjj05aRXq7ie0m1diSQNJ4VSm9nJhgc2bC0Fv4cL8=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=cuw+uNkJjMHs2KR9tTDxZi2Oz3s8Fw9sJM6Yp2yVy3apsKWvSNrD0twHQrBzJN0TShbyASLhPUdGl/tozs9e1MoCE/EKSlm1qDXk1fiEIdqgGMSjKSLyhJsE1VscktPyv1S+/+6zxneNfzEGa2F4LK5exU67EBqAHdVUFrWY+HS43kHIEDfioXw8kCnO+CApPvE0RZYzhMlqW2qdA1raLKQzlW9AtlT4wwiaSgZXIpxpSb+7NQeBBT92c8ABfzN+FGOHHWjTet9jqOp9+ucAXeWwS2qNSxIgTu58+ak3a5Ar+6v/frE0IndlwhEGTF4xepergJiFiXsV3lnH3UwCYQNS8v7T6Llcg/qOemOUsZ6VwhP9jy4xTvDTNgavA5mHgBMa+zMuWTQGHh92JFzxLG7w67Vq0oqZvsPidRpm1m0xMvZNqEGFvu87aDTAUsIQfUwoBX/yzmr5rIqSNKe+/VBHoapiIW3fCNGSKxbh3pJ24QHHAr/R2GUzgcHuHHI6be6Lauvv4yQPxf2OT5Xi/AvrEd2x4ORAnb0RM49iQX6V6Urx/wdThKHl3EjGzcFvsixSoB6LMzbG+ssSc8kt7p9UP+shGTl3+Jb/Xk1W6mcdjapT4x5hEZZJp3XRIjeEFVRTdSPxZ6Re09KKoZpAAeXDuryEI8pbWOBXJxNLTTs=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1682545869; cv=none; b=VNGDDpE++s6ZtrI9UAVcr+8++3KxsKz3TgLtckHlAeW1NKH29UpUazWOot4eBJvMsA/JrPoXNbwIdG5isSIG/EQkW8ObKvX/u3LPXUEm1UKDdXY4fbgLCFP+CrGYOQmDur3heLVsPlcJ5sAzoxcLrtbWiXQObAZf4i6Ndw3MxH7Xw9sScC2gQzL8btiWBKcabm7I+z2TrMp1CFiJrQ3CH6KfixesonsHAJzTnjOSjR9yaSCmGRk4vudNW4J2Uzla0DA+Eb4WFtGq63h/MZfPKO6lUfDZNPNSbCzje8g1GK7gRnB41lW0PLAKIOBgTSlkhp8FLbcuoxYuY8RB1YXhrxJeyiURsNJ8dPUG2dDsNKTLfQ6niCyC9CkG4uEHqBmjKYbK3zA2et8EFIFgeiVAiIFx8pAB7OmS+nzgZTIv/gOXgJLzHkd40D2QEOjjMfd5ZovReDlv//IcomqW2PvMMPvRG68uSTS4INenhpvXlW4rI8qEA0lUX5rt1/0rgOLOLLQ9CaHil44MX8hi2Cyc30O8pKH5Sn87lfZ3lVoxsbGHFMB4tbVncNMt/QS45mTpg8oOBmSSfAmwOUhDHQoVT7b785uUQwG1Un0kcZ94pkcNB4CASIbe/JhJ1Dl+V7wcUdZbZuVDoNQj7/fCReE1wswRKL6FmwdEP7ov8YIkXkU=
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 26 Apr 2023 23:52:54 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1682545869; bh=Taqjj05aRXq7ie0m1diSQNJ4VSm9nJhgc2bC0Fv4cL8=; h=Date:From:To:Subject:References:In-Reply-To:From; b=kEoxLIXttjQkekZkMB2LrKJnwhsDS4DsFy3evTo9zoOO8a3SCfxEIfGt2+MaT2DVc P3EsWxn4Qdz4Weepy2H0ddta0Q62y+01mLbN/9PYjdLGEXQL0jB/5k4i2AD08XECNe zOM4r/aFmEbPTaSpbmCBCeiXbILR5teNuCQmOcW9/FcW55tVv9JCXo5bve8kO7ZLu8 eqjHtnvkNGyq5gSzMtyZAqj1gGnIQibbVD4r6ow4f+QzLGYYvQecRrB7raaLBeSUNU O5mGlREbcBeBPjdeiztQ78y+F6aCQuqY39O1D9eJ0tuqETLlbO1yvFjwPJVIR3B2s/ k4nC4v7VtRZyJvIIhCC9KpGabCaJP6uJ2Oh/N+v5T9aDtMt0Xl/T5PUeagOJfF1w9T G4AkqdqWfXwO8JdF16H4MucEc3Bx2uzVBLu3pnCGurOc+feR9COmiPtmKPot2dDQcb FgA+PenUiPETLEC0WsJEQ/PIM1uQ6w1AToUjhK1lMvzRi9uhgThzgnGrWPoMZU6btW WgvNyStnkczjsfizT/wZPiLeyfaK19MYoDQ4Mq636Djl9oRlcDB2GuFZE17vSLYjAO TUaw7TEO1CjBOGll+/aarmjV/DPf8422BDaO5yfFPn2YxZQDDgpu9EeONsO9f4oHl+ N0AIbeIV5MrxHPFa0IfRdW1A=
- In-reply-to: <CACESMjKxOVCFG75pZuwdyH+TsJcznjOz6QvL6NNGCyRG=8juVQ@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CACESMjKxOVCFG75pZuwdyH+TsJcznjOz6QvL6NNGCyRG=8juVQ@mail.gmail.com>
On Wed, Apr 26, 2023 at 11:01:16PM +0200, kevin lucas wrote:
> I recently had cause to run a computation that spat out the number
> 2.0298832… A little research suggested that this should be a special value
> of a Dedekind zeta function, but I can’t find the exact relation. Now, I’m
> aware that PARI/GP can recognize algebraic numbers using algdep, and one
> can easily incorporate numbers involving common constants like $\pi$ and e
> with qflll. But what if you suspect relations between special values of
> special functions (e.g. eta/gamma/zeta functions) and you don’t know which
> values of which functions, as in this case? I’ve known mathematicians who
> found relations like this all the time, which leads me to believe there are
> some dark arts in PARI for this that are only well known within a small
> community.
Dedekind zeta function special value are multiplicative in nature, so you
might have more chance by taking the logarithm and use lindep with the
logarithms of special value of L functions.
If your number if given by a series, the shape of the series gives a tip.
For example, if your series is sum a_n/n^2 with integral algebraic integers a_n,
then you should use lindep with:
values at 2 of L function, dilogarithms, and product of value at 1 of two L
functions or logarithms.
You give too few decimals to try this.
However, Google suggests <https://en.wikipedia.org/wiki/Hyperbolic_volume>
which gives:
? -6*intnum(x=0,Pi/3,log(2*sin(x)))
%53 = 2.0298832128193072500424051085490405719
Plouffe ISC suggests:
? hypergeom([1,1,1]/2,[3,3]/2,1/4)*2
%54 = 2.0298832128193072500424051085490405719
Cheers,
Bill.