Bill Allombert on Sun, 20 Nov 2022 10:50:05 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Obtaining the coefficient matrix of multivariable homogeneous linear equation system. |
On Sat, Nov 19, 2022 at 09:52:32AM -0800, Thomas D. Dean wrote: > On 11/19/22 04:58, Charles Greathouse wrote: > > > > > ? A = [a,b;c,d]; > > ? basis = [matrix(2,2,k,l,k==i&&l==j)|i<-[1..2];j<-[1..2]] > > %2 = [[1,0;0,0],[0,1;0,0],[0,0;1,0],[0,0;0,1]] > > ? C = [A * B - B * A | B<-basis] > > %3 = [[0,-b;c,0],[-c,a-d;0,c],[b,0;-a+d,-b],[0,b;-c,0]] > > ? D = Mat([concat(Vec(c)) | c<-C]~) > > %4 = [0,-c,b,0;-b,a-d,0,b;c,0,-a+d,-c;0,c,-b,0] > > ? matker(D) > > %5 = [1/c*a-d/c,1;1/c*b,0;1,0;0,1] > > > > Cheers, > > Bill. > > > > Ubuntu 20.04 latest gp. > > I get an error with this code. The value of D is not the same order and is > enclosed with brackets. Ah sorry, there is a misplaced ~, try this one. A = [a,b;c,d]; basis = [matrix(2,2,k,l,k==i&&l==j)|i<-[1..2];j<-[1..2]] C = [A * B - B * A | B<-basis] D = Mat([concat(Vec(c~)) | c<-C]) matker(D) Cheers, Bill