Karim Belabas on Sun, 24 Nov 2019 16:51:28 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Finding the generating funcction for a theta sequence? |
* Kevin Acres [2019-11-24 03:02]: > Hello Bill, > > Thanks for getting back. My end goal was to try and come up with a, > relatively simple, eta quotient that also generates this sequence. > > Are you able to offer any advice in that area? Starting from Bill's construction, you can easily show that it can't be expressed as a simple eta quotient: ? mf4=mfinit([24,4,1]); mf6=mfinit([24,6,1]); S4=mfeigenbasis(mf4); ? S6=mfeigenbasis(mf6); ? F = mfdiv(S6[2],S4[1]); ? mfisetaquo(F) %4 = 0 On the other hand, it's actually a combination of Eisenstein series: ? mf = mfinit([24,2], 3); ? mftobasis(mf, F) %6 = [6, 0, -38, -6, 272, -910/3, 208/3]~ ? E = mfbasis(mf); ? for(i = 1, #E, print(mfdescribe(E[i]))) LIN([F_2(1), B(2)(F_2(1))], [1, -2]) LIN([F_2(1), B(3)(F_2(1))], [1, -3]) LIN([F_2(1), B(4)(F_2(1))], [1, -4]) LIN([F_2(1), B(6)(F_2(1))], [1, -6]) LIN([F_2(1), B(8)(F_2(1))], [1, -8]) LIN([F_2(1), B(12)(F_2(1))], [1, -12]) LIN([F_2(1), B(24)(F_2(1))], [1, -24]) So you can actually write it only in terms of F_2 (= mfeisenstein(2)). More precisely (-12 B(2) + 152 B(4) + 36 B(6) - 2176 B(8) + 3640 B(12) - 1664 B(24)) . F_2 (where B(n) is the q -> q^n operator). In fact, from this description, your original form had level 12: ? mftobasis(mf, [1,-12,116,-12,-1804,8120,116,-155744,684532,-12,-13237576,58212208,-1804,-1125531816,4949148576,8120,-95692200972,420774756136,116,-8135721271536,35774143649208,-155744,-691696548706960,3041506787016416,684532,-58807829742387572,258587980022941272,-12])]) %8 = [-76, -12, 544, -1820/3, 416/3]~ ? E2 = mfbasis(mf); ? for(i = 1, #E2, print(mfdescribe(E2[i]))) LIN([F_2(1), B(2)(F_2(1))], [1, -2]) LIN([F_2(1), B(3)(F_2(1))], [1, -3]) LIN([F_2(1), B(4)(F_2(1))], [1, -4]) LIN([F_2(1), B(6)(F_2(1))], [1, -6]) LIN([F_2(1), B(12)(F_2(1))], [1, -12]) Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `