Bill Allombert on Thu, 08 Aug 2019 20:55:37 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: MacLaurin expansion of even functions |
On Wed, Aug 07, 2019 at 12:21:53AM +0000, Jacques Gélinas wrote: > $ \p > realprecision = 57 significant digits (5 digits displayed) > $ \ps 4 > seriesprecision = 4 significant terms > > Consider the differences between the first two and last two expansions > > $ Vec(besselj(-1/2,t)) \\ cos > [1, 0, -1/2, 0, 1/24] > $ Vec(besselj(1/2,t)) \\ sinc > [1, 0, -1/6, 0, 1/120] > > $ xis(s) = gamma(1+s/2)/Pi^(s/2)*(s-1)*zeta(s); > $ Vec(xis(1/2+t)) > [0.49712, 0.E-57, 0.011486, -1.2745 E-57] > $ Xi(t) = lfunlambda(1,1/2+t) * binomial(1/2+t,2); > $ Vec(Xi(t)) > [0.49712, 0.E-77, 0.011486, 0.E-76] > > Of course, I would want exact zeros for xis, Xi as for the Bessel functions, > and, if possible, the same number of coefficients for a given series precision. > > How can this be done simply for any even function ? > Sereven(f,var) = ??? I do not know. What about Sereven(f)= { my(V=Vec(f),v=variable(f)); forstep(i=2,#V,2,V[i]=0); Ser(V,v)*t^valuation(f,v); } Cheers, Bill.