| Jacques Gélinas on Wed, 07 Aug 2019 02:21:59 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| MacLaurin expansion of even functions |
$ \p realprecision = 57 significant digits (5 digits displayed) $ \ps 4 seriesprecision = 4 significant terms Consider the differences between the first two and last two expansions $ Vec(besselj(-1/2,t)) \\ cos [1, 0, -1/2, 0, 1/24] $ Vec(besselj(1/2,t)) \\ sinc [1, 0, -1/6, 0, 1/120] $ xis(s) = gamma(1+s/2)/Pi^(s/2)*(s-1)*zeta(s); $ Vec(xis(1/2+t)) [0.49712, 0.E-57, 0.011486, -1.2745 E-57] $ Xi(t) = lfunlambda(1,1/2+t) * binomial(1/2+t,2); $ Vec(Xi(t)) [0.49712, 0.E-77, 0.011486, 0.E-76] Of course, I would want exact zeros for xis, Xi as for the Bessel functions, and, if possible, the same number of coefficients for a given series precision. How can this be done simply for any even function ? Sereven(f,var) = ??? Jacques Gélinas