macsyma on Tue, 30 Jul 2019 03:44:52 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: "pari-users@pari.math.u-bordeaux.fr" <pari-users@pari.math.u-bordeaux.fr>
- Subject: Re: nfgaloisconj
- From: macsyma <macsyma@yahoo.co.jp>
- Date: Tue, 30 Jul 2019 10:44:45 +0900 (JST)
- Delivery-date: Tue, 30 Jul 2019 03:44:52 +0200
- Dkim-signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; t=1564451086; s=yj20110701; d=yahoo.co.jp; h=Date:From:Reply-To:To:Message-ID:Subject:MIME-Version:Content-Type:Content-Transfer-Encoding:References; bh=CeWHUzrFh7oNiPh9KJhiM+pVMmqOJEmSSZK1BloBHt8=; b=FkChhKqGysXvrYdvDmEEMLLi2A/4xEMY/gVlP8wPrMNserdG8twLxTn5ytXOiKiA QG4xmPmy1jfcLoZIylMCg7hKkLOCfQofw3mKaugZJtQP4zPV5mGdxwoiq++cpLNuN8Z 1QEScqI4bFUeprO0mve8ykDnZYVlWUlZmRrkPhjA=
- Domainkey-signature: a=rsa-sha1; q=dns; c=nofws; s=yj20110701; d=yahoo.co.jp; h=Date:From:Reply-To:Message-ID:MIME-Version:Content-Type:Content-Transfer-Encoding:References; b=PuAMOr9qDPaWpBnCzFrqj+pWkoki83DwMcqC/qI9cG8pflF/ArtBMkUxu6pHIe7G uAkdoZVRceoMN6QJXesK5KqCAaWLtuziTsl7O5ub+I11NwFYixsMyWT+Nd3aweu1pCQ JtZiKAu7QzctNKIu7Vj2MZlo4GglJEWNqDAE42gk=;
- References: <249836670.1957831.1564451085430.JavaMail.yahoo.ref@jws704101.mail.ssk.yahoo.co.jp>
- Reply-to: macsyma <macsyma@yahoo.co.jp>
Thank you, Bill.
> what it does
In my code, G1 is a permutation representation, G2 is a polynomial representation of G the Galois group of f over Q. The principle is directly linked to Q-automorphism, that for each m_j in G, the permutation of the roots of f is obtained by replacing alpha the primitive element in the root representation of f with m_j(alpha) the image of alpha that is a root of g. One can consider alpha = polroots(g)[1], m_j(alpha) = polroots(g)[i] in G12 code.
G12 can be applied even if G is not weakly super-solvable. However, for example, the processing time of https://www.math.u-bordeaux.fr/~ballombe/polynomials.gp takes 20 to 30 times that of galoisinit + nfgaloisconj, so I'm hoping that you make speed up nfisincl and nfsplitting.
macsyma