Bill Allombert on Mon, 29 Jul 2019 10:57:56 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: nfgaloisconj |
On Sat, Jul 27, 2019 at 11:24:06AM +0900, macsyma wrote: > Thank you, Bill. > > > require knowing the Galois group > > Yes. So I devised a numerical method as following. > > > G12(f) = > { > my(g = nfsplitting(f), d = poldegree(g), > R = nfisincl(f, g), v = variable(f), N, M, G1, K, G2); > localprec(max(200, floor(1.5*d))); > N = round(10^5*[subst(R, v, s)|s <- polroots(g)]); > /* These parameters are only heuristics. */ > M = Map(Mat([N[1]~, [1..poldegree(f)]~])); > G1 = [Vecsmall([mapget(M, s)|s <- t])|t <- N]; > K = matinverseimage(matconcat(vector(d, i, subst(R, v, i))~), [1..d]~); > G2 = [R*[K[s]|s <- Vec(t^(-1))]~|t <- G1]; > return([G1, G2])}; This looks great. Could you tell me what it does ? Cheers, Bill.