Bill Allombert on Tue, 09 Oct 2018 21:58:04 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Introduction, Curve Algorithm |
On Tue, Oct 09, 2018 at 02:40:25PM -0500, Brad Klee wrote: > \\ Genus 2, parity symmetric sextic ( Cf. OEIS: A006480 ). > \\ 2F1 parameters: (a,b,c) = (1/3,2/3,1). > PFData = HyperellipticPicardFuchs(-(1/4)*(18*x^2+48*x^4+32*x^6)); > [-PFData[3],CheckCertificate(PFData)] > T=sum(n=0,100,(3*n)!/(n!)^3*(z/27)^n); > [T,T',T'']*PFData[3] > \\ [ [2, 18*z - 9, 9*z^2 - 9*z]~, 0] > \\ BigInt*z^100 > \\ time delta = 8ms, fast! Hello Brad, If you want to define power series, do T=sum(n=0,100,(3*n)!/(n!)^3*(z/27)^n)+O(z^101); so you get ? [T,T',T'']*PFData[3] %16 = O(z^100) Using the numerical version: Eqn=-PFData[3] T(z)=hypergeom([1/3,2/3],[1],z); h(z)=[T(z),T'(z),T''(z)]*subst(Eqn,'z,z); sum(i=1,100,abs(h(i/1000))) %24 = 5.450207108236383428E-37 Cheers, Bill.