Brad Klee on Tue, 09 Oct 2018 21:40:34 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Introduction, Curve Algorithm |
\\ Genus 2, parity symmetric sextic ( Cf. OEIS: A006480 ). \\ 2F1 parameters: (a,b,c) = (1/3,2/3,1). PFData = HyperellipticPicardFuchs(-(1/4)*(18*x^2+48*x^4+32*x^6)); [-PFData[3],CheckCertificate(PFData)] T=sum(n=0,100,(3*n)!/(n!)^3*(z/27)^n); [T,T',T'']*PFData[3] \\ [ [2, 18*z - 9, 9*z^2 - 9*z]~, 0] \\ BigInt*z^100 \\ time delta = 8ms, fast! On Tue, Oct 9, 2018 at 7:11 AM Bill Allombert <Bill.Allombert@math.u-bordeaux.fr> wrote: > > On Mon, Oct 08, 2018 at 10:44:22PM -0500, Brad Klee wrote: > > Hi Bill Allombert and Pari Users, > > > > 2b. EllipticCurves.gp > > The easiest examples are elliptic curves. Each torus S_z has a real and > > complex period, which are related by a second order differential equation. > > Vector A has three components. In two special cases vector A determines > > a hypergeometric differential equation, solved by T(z) = 2F1(a,b;c;k*z). > > Let see if I understand the example (Examples/EllipticCurves.gp) > > \\ Hypergeometric Quartic > \\ We define > T(z)=hypergeom([1/4,3/4],[1],z); > \\ (hypergeom is available in the GIT master branch) > PFData = HyperellipticPicardFuchs((1/2)*(x^2-(1/4)*x^4)); > Eqn=PFData[3] > \\ [3,32*z-16,16*z^2-16*z]~ > \\ So we set > h(z)=[T(z),T'(z),T''(z)]*subst(Eqn,'z,z); > \\ which should be identically 0 and indeed > sum(i=1,100,abs(h(i/1000))) > \\ 8.717140089686723290E-37 > \\ OK! > > \\ Hypergeometric Cubics > \\ We define > T(z)=hypergeom([1/6,5/6],[1],z); > PFData = HyperellipticPicardFuchs((1/2)*(x^2-c*x^3)); > Eqn=-vector(3,j,9/4*(polcoef(PFData[3][j],2,c)*(4/27)+polcoef(PFData[3][j],0,c)))~; > h(z)=[T(z),T'(z),T''(z)]*subst(Eqn,'z,z); > sum(i=1,100,abs(h(i/1000))) > \\ 1.5733945968008239299E-36 > \\ OK too! > > Cheers, > Bill. >