Bill Allombert on Sun, 22 Jul 2018 19:15:59 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: generating function solution to poly |
On Sat, Jul 21, 2018 at 11:15:38AM +0200, Bill Allombert wrote: > On Sat, Jul 21, 2018 at 06:38:30PM +1000, Kevin Ryde wrote: > > I have a generating function (and more terms too) > > > > g = x^2 + x^3 + x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 29*x^8 + 67*x^9 + O(x^10); > > > > which satisfies a cubic > > > > (1+x)*g^3 - 2*g^2 + (1-x+2*x^2)*g - x^2 == 0 > > > > Is there an easy or good way to have gp solve that for series g? > > A least you can use Newton algorithm: > > ? P=substvec((1+x)*g^3 - 2*g^2 + (1-x+2*x^2)*g - x^2,[x,g],[X,y]); > ? g=subst(x^2 + x^3 + x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 29*x^8 + 67*x^9 + O(x^10),x,X); Sorry, I should have precised: if you use an older version of PARI you need to do ? y; ? P=substvec((1+x)*g^3 - 2*g^2 + (1-x+2*x^2)*g - x^2,[x,g],[X,y]); ? g=subst(x^2 + x^3 + x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 29*x^8 + 67*x^9 + O(x^10),x,X); etc. so that 'y' has a higher priority than X. Cheers Bill