Peter Pein on Sun, 22 Jul 2018 10:15:34 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: generating function solution to poly |
Hi Kevin, I'm just curious: are you sure the coefficients in g are correct? starting Bill Allombert's suggestion to iterate via Newton but starting with just X^2+O(X^3) gives another sequence for g and a difference for coeffs of x^7 and higher powers ? P=substvec((1+x)*g^3-2*g^2+(1+x+2*x^2)*g-x^2,[x,g],[X,y]) %1 = (X + 1)*y^3 - 2*y^2 + (2*X^2 + X + 1)*y - X^2 ? g=subst(x^2+O(x^3),x,X) %2 = X^2 + O(X^3) ? g=truncate(g)-subst(P,y,truncate(g))/subst(P',y,g) %3 = X^2 - X^3 + X^4 - 3*X^5 + O(X^6) ? g=truncate(g)-subst(P,y,truncate(g))/subst(P',y,g) %4 = X^2 - X^3 + X^4 - 3*X^5 + 6*X^6 - 14*X^7 + 37*X^8 - 91*X^9 + 237*X^10 - 629*X^11 + O(X^12) ? g=truncate(g)-subst(P,y,truncate(g))/subst(P',y,g) %5 = X^2 - X^3 + X^4 - 3*X^5 + 6*X^6 - 14*X^7 + 37*X^8 - 91*X^9 + 237*X^10 - 629*X^11 + 1668*X^12 - 4512*X^13 + 12298*X^14 - 33740*X^15 + 93365*X^16 - 259775*X^17 + 726672*X^18 - 2043004*X^19 + 5767735*X^20 - 16347053*X^21 + 46495340*X^22 - 132664614*X^23 + O(X^24) ? This is the same result as in an well known CAS: In[1]:= Series[Root[-x^2+(1+x+2 x^2) #1-2 #1^2+(1+x) #1^3&,1],{x,0,23}] Out[1]= x^2-x^3+x^4-3 x^5+6 x^6-14 x^7+37 x^8-91 x^9+237 x^10-629 x^11+1668 x^12-4512 x^13+12298 x^14-33740 x^15+93365 x^16-259775 x^17+726672 x^18-2043004 x^19+5767735 x^20-16347053 x^21+46495340 x^22-132664614 x^23+O[x]^24 please ignore, if I'm writing crap ... Peter Am 21.07.2018 um 10:38 schrieb Kevin Ryde: > I have a generating function (and more terms too) > > g = x^2 + x^3 + x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 29*x^8 + 67*x^9 + O(x^10); > > which satisfies a cubic > > (1+x)*g^3 - 2*g^2 + (1-x+2*x^2)*g - x^2 == 0 > > Is there an easy or good way to have gp solve that for series g? > > I know how to work upwards to get g term by term (after deciding lowest > should be 0), but maybe gp already has it. I wondered only for interest > or generality though, since this one comes from recurrences which are > easy to calculate. I attempted serreverse() without joy (change > variables to solve in x, but I may have confused myself). > >