Bill Allombert on Wed, 01 Mar 2017 19:01:57 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Mathematica "Reduce" function |
On Wed, Mar 01, 2017 at 06:05:14PM +0100, Bill Allombert wrote: > On Wed, Mar 01, 2017 at 05:45:07PM +0100, Pedro Fortuny Ayuso wrote: > In your example, you can use polresultant: > > ? P=polresultant(x^2 + 3*y^2 -4, 3*x^3 - 4*y^2 + x*y-1) > %7 = 243*y^6-54*y^5-953*y^4+144*y^3+1300*y^2-96*y-575 > so if [x,y] is a solution, then > 243*y^6-54*y^5-953*y^4+144*y^3+1300*y^2-96*y-575 = 0 > then > ? polrootspadic(P,3,10) > %2 = []~ ... so there are no solutions mod 3^k when k is stricty larger than the p-adic valuation of the discriminant of P: ? valuation(poldisc(P),3) %2 = 9 (this is conservative, in this case k>3 is sufficient). Cheers, Bill.