Pedro Fortuny Ayuso on Wed, 01 Mar 2017 17:45:20 +0100

 Mathematica "Reduce" function

• To: <pari-users@pari.math.u-bordeaux.fr>
• Subject: Mathematica "Reduce" function
• From: Pedro Fortuny Ayuso <fortunypedro@uniovi.es>
• Date: Wed, 1 Mar 2017 17:45:07 +0100
• Delivery-date: Wed, 01 Mar 2017 17:45:20 +0100
• Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=unioviedo.onmicrosoft.com; s=selector1-uniovi-es; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version; bh=qJ+gCPdqEYha95Sg3aTrf7307dYQy1uSs3geIEJSVcs=; b=E0O6nIdJkVBycEaTu5k2xIYkgoiNHs5VO6ACbVdWbMJMGKNz8luGvDwlDAKR5TL8Kn+GiidahfAanWBjDCPn07Hg1Ln0T2g1NjI6B57Z4EV18M7CHmhmjXFvgcM9fGqjBS8z4m/1G/gUDNn+KIJzB+YmmZRjkxW3Cjc391Y+zkM=
• Spamdiagnosticoutput: 1:99
• User-agent: Mutt/1.5.20 (2009-06-14)

```Hi,

In Mathematica, you can do

In[1]:=
Reduce[x^2 + 3 y^2 == 4 && 3 x^3 - 4 y^2 + x y == 1, {x, y}, Modulus -> 9]

Out[1]=	...

To get a list of the solutions of polynomial equations over Z/qZ (in
the above example, over Z/9Z).

Is this possible in pari?

I am trying to count the solutions of some 3-variable polynomial
over Z/(2^k)Z for different k, but the naive approach of looking
at all the points is (obviously) infeasible.

Thanks!

Pedro.

--
Pedro Fortuny Ayuso
http://pfortuny.net

EPIG, Campus de Viesques, Gijon
Dpto. de Matematicas