Karim Belabas on Sat, 30 Dec 2023 15:39:58 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Dirichlet L series principal characters
|
- To: "ra.dwars@quicknet.nl" <ra.dwars@quicknet.nl>, "pari-dev@pari.math.u-bordeaux.fr" <pari-dev@pari.math.u-bordeaux.fr>
- Subject: Re: Dirichlet L series principal characters
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Sat, 30 Dec 2023 15:39:51 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1703947193; c=relaxed/relaxed; bh=xPnalspzwJ0b/CgTRL54HhhHYi23oGkE6F7wTiS3eso=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=qIENQPmS2KXkRLWLG6Mlxg8MBu5oYzIIvRJk+FQbNfyvmFt9g83muHqcAJBqELha7WAMKzqbGYUhpcpThBxRspa/pNkKUQWoiVpY+UIkgQfNAldvl50emuvW4bs5TjRkyimIc9WDEeyfHsqrsapyweLK7BRBpEUTpdLN4v06TIleY+d63/PsMOJmJiE6l5s7vjCj1w+am2AXNACQgqpzNPz7phLIuy1xlwq3/uAvLLZYxm6VOSGzkGd1IjnRqTp0u5y218e76t31WvQN2GeaFZuhpo5KlesLJAtGA7JJds9CO8XOE6zfZQGgXxEvpsaIpr49Z8iqrrGbE/98OJfjWz+rIl3ZSbMp6mPTe+c+iK4JaMVanYJ6RAwh2FMMtXPMwazE6lAWqsU0rC8CH7r5zIrnZVKMj61H00+09CEYBF5k3RHHVtkwmwp9D5Kt5bHmJoGU56mEQkoD1FzR4PcA3Yv9nHJFmoMDRFjchGjrS4YvLlRkd8GcrfraQX/G7ieuuKgsoHW6g8BFAGyW1S3b2jx+VSSlqT7ZRlRj3s7Rfl4unsrVnkiWK2zcbDsYdpII0Y50YRsLiwnbj8uwYR+p/iYA+S1bcyXtnpNHGpvrbz5ubwhXMjmmsZJWj/DDNV+UdEp+qameltCECeoie5p872lgRxQaJzsX03RkXxpyVog=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1703947193; cv=none; b=Gn/E26Rd+6sYn3ru6zurHt93aqDueoaluYZ2CewqTI4ha6V1QcNsvmixcBZIwTGWxqwZUSMBspwFGQ5epMLvvQO57XPwaAnXywHzmTQcnGxO+QJ0mZYr0P05ywBVXAcomtiwhF6wJTnUFcaYFSWyEcORuE1GqDnyh1NRD4bQ3NzgwSnPcYyz185rHY+hjWpryN70ANoIVQhs3Kr5tvT/dZ5ijy0wC7gZS07uLbiis8ZJMHNxk0kh1lIIdGKuoMy5ojXOuiPJpGZpBQjb7c5KmW1swKlfy0w4Jj1SuzW4UWtK6b3npjydR8zRduC1axX0OPpIfwo6hSR4cNZ+RdurHSyH5fodt5G56o5Oj2amgtFGCLfQvScq2XzON98/mKi7MaVZcZVv7rDxe7sNw4/zf3uJF9L1K5yJgn8J6K++MLvtpaBSmC5He3lz3Nmbugz7Nkx6KoGpqfYu+NBPBmS7nJl9Zel4ph9R7845DEgioj0ZfW0EpYLaCDswvKTevxJLW8crcSTiRMCe2QALTspvJm0HwVv3swPn68ADaa9w1+lNtDB8HlM9/LGEfJyO2cXNY1aQMVJaBsEfnlcHMttLxDUQF2+3fWteALBGuagl5qW8U3r2KGAW7lr9FxobqtJT0XdHU6amkVSFVXHVt/JjBzv9QwrhGsnGkIB0hHjZsPw=
- Authentication-results: smail; arc=none
- Delivery-date: Sat, 30 Dec 2023 15:39:58 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1703947193; bh=xPnalspzwJ0b/CgTRL54HhhHYi23oGkE6F7wTiS3eso=; h=Date:From:To:Subject:References:In-Reply-To:From; b=VHFNVm5mkZjoKbIFZnpDYtK+HSogStKZxt9Y6daY7ZAhTHgQ15xQ7H4g0pVqtI/Wn Sqz+R77yGQfWQt6WLO6OUotftcYTVj9/lqpV6AeHpMdvMVknyjUX2w0jYfCoeBmFML p6AYztPdYzS7hNapqcQj5j1yB75PJWb3PVZkxQA8XDDoIlSuxH0nT4VYrCFvz+ZY5d XmL7lUXYmIZcQ9czLFfD4kBnXwpVrtCnCIRsvoNlVRXe9+X4f8AS0MGOWOdo71Ml0r 9TLvg5v79tPMm6wjFZL+RhZZjRKmvR8SCm7Lkgh3CcRQ3ATTNw33eU0TXqQRUpg2ms ISbCeylkkm+tIl/cPbdyZ0dsZzPZLwhcpX19HfVGPhD4CDJrbdDGulEs1f/hD2OInq 87EVMZAXqK2inAN4JrOeJuh6CUvHNJwKKyMzs/2FPx0X7/xiGO7/mxfeeEsAmXbfaj AMF4bFadvjHI4jIuieAn9whb6UEUIbbS5pnerwHu5qp0INbmXXdbEqV7bxECSkcBm9 Bd/7VRxE6edSFrHzf7lLahsgu3+GghMIBj29cpaIvBCe+qXKyGfdhoLAEizgKITq2B GosLpYlm1EnAobOUzIsT2PyjsuVNQaEMSYNM2b3GSPeg6Y3Q29LWs/TS9DXsZ6s+Yr xRAcGF/nQUIchxy/Z/D34O14=
- In-reply-to: <ZZAqxM5C60z80p9K@math.u-bordeaux.fr>
- Mail-followup-to: "ra.dwars@quicknet.nl" <ra.dwars@quicknet.nl>, "pari-dev@pari.math.u-bordeaux.fr" <pari-dev@pari.math.u-bordeaux.fr>
- References: <B8182EFC-C7E4-0347-9C92-6188A217458E@hxcore.ol> <ZZAqxM5C60z80p9K@math.u-bordeaux.fr>
* Karim Belabas [2023-12-30 15:35]:
> Dear Rudolph,
>
> as documented in ??13 (or ?? "L-function"), only "primitive" L-functions
> are supported by PARI's implementation.
>
> In particular for Dirichlet L-function (and more generally Hecke
> L-functions), a character given to any modulus encodes the attached
> *primitive* character. Thus all principal characters will yield the
> L-function attached to the trivial character mod 1, i.e., the Riemann
> zeta function.
>
> The Dirichlet L-function attached to the actual non-primitive character
> mod N differs from the primitive one (of conductor F) by a simple finite
> Euler product
>
> \prod_{p | N, p \nid F} (1 - \chi(p) p^{-s})
>
> Just multiply the value returned by lfun() by this factor
> (you may precompute the \chi(p)...).
>
> If you're only interested in principal characters mod N, this is as
> simple as
>
> P = factor(N)[1,]; \\ can be precomputed
Sorry: I meant the first column (prime divisors of N), not the first row.
P = factor(N)[,1];
This doesn't work for the trivial case N = 1 (no correction !). So
here's a "foolproof" version :
P = if (N == 1, []~, factor(N)[,1]);
> ZetaN(P, s) = zeta(s) * prod(j = 1, #P, 1 - P[j]^(-s));
>
> Cheers,
>
> K.B.
>
> * ra.dwars@quicknet.nl [2023-12-30 15:04]:
> > Dear developers,
> >
> >
> > I’d like to generate Dirichlet L-functions and used for instance:
> >
> >
> > default(realprecision,30)
> >
> > p = 2; q = 3;
> >
> > L =lfuncreate(Mod(p,q));
> >
> > print(lfun(L,2));
> >
> >
> > This method works well for all non-principal characters, however seems
> > to fail for the principal ones with q > 1:
> >
> >
> > default(realprecision,30)
> >
> > p = 1; q = 3;
> >
> > L =lfuncreate(Mod(p,q));
> >
> > print(lfun(L,2));
> >
> >
> > 1.64493406684822643647241516665 = (pi^2)/6
> >
> > which should be:
> >
> > 1.46216361497620127686436903702 = (4*pi^2)/27
> >
> >
> > It always seems to default to the zeta-function even when the modulus
> > is greater than 1.
> >
> >
> > Maybe I do something wrong here and is the Mod(p,q) not allowed for
> > principal characters. Keen to learn how to obtain the right outcome.
> >
> >
> > Thanks,
> >
> > Rudolph
> --
> Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
> Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
> http://www.math.u-bordeaux.fr/~kbelabas/
>
K.B.
--
Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/