Karim Belabas on Sat, 30 Dec 2023 15:35:53 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Dirichlet L series principal characters
|
- To: "ra.dwars@quicknet.nl" <ra.dwars@quicknet.nl>
- Subject: Re: Dirichlet L series principal characters
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Sat, 30 Dec 2023 15:35:48 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1703946950; c=relaxed/relaxed; bh=yqyZLWRo6edSx2j//CGIJJL23HKVOdAjTsdFWW/ApDM=; h=DKIM-Signature:Date:From:To:Cc:Subject:Message-ID: Mail-Followup-To:References:MIME-Version:Content-Type: Content-Disposition:Content-Transfer-Encoding:In-Reply-To; b=w8y4vMXHbmQ9Vs5NWQhz1SgngUK76CCMYlUS3ud2YZ7se6Q6BcPqIwarQYHnIoGvfSfUl6WEBB3St8CevsHnRMZUHT+aRq0nw4UqMz+JFmDtgBy3zzYL14sVZg9xFovxlmJCb5aGd1UvTnWtRblqyoRDKlNz1VnohEAkuhliGUEoAeF1d9b79G8VZCLQtLR0pU4yOWnRdTIA2hCRLzVnpXLiaMvEW/nkY4mxM4OAAHDn5ZyW8SI5wxQkdJPJE+eAdL0bmhwAhboEuXI2qxv2rorLWtfRKkSExG9e0K8nP3Yalbpenxo/gRH7dq7gkrBNFWpZIzzkxrhdLxc/pfRI2Y7DJeq5TYUIMG/5ol1OJXJWbxAY0Ns7nNcTgJ/ihQUxI5nJ9tGhiS/dbT9/P9c9wl/zx9tLnl28Psv/pDmSt5BxBr8LwfDGckwEwSFBW5jjNdAxT47/sLGG3MVNLckQ6Sa1sVgQ435nFZxJluBamR7xqUjZFzD+EAWokQzvCEjc3rn/oHv9LvWnZ4+DaXWlbw7lhLAxKItgfMhpqdRfCTI/cYHfVo3WhCOFP8sn0QH9HuPgFx+Tne36jo22ujrKSfH0BEOM79gh3REnOACo6WKFblZFguQiaka/GgUutnJ6vW21e+wluyp9XbApoGBP9uUdiIxIpyC1Ec7KiRuoPTQ=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1703946950; cv=none; b=naLSrbUm80A8fDP6BtuQvgLMCCX5GHQmPlvr4kX6Nd9kAQGFGtER/WfWDnZhzMPza1kxrdzIuY80ob/z6Tz7tWiTN2y8hGlo1eqQQRn5aHwsLgFojEMGd7Wuguiwbw7QFO4lJE5Q/e978yEQjHGBrIEuCb0WNJhoiGJWyP9va9s3DOQj1/qgNC5HIaXhUCbUknOLc6MLp7tLMCPc/1Fhgmh2UeE++cXv+01DhtX5Ilf5Qk2j+Hw/rmsaXZCPmbFBfdLum88BOjZi58+/x5oY5kP1cibZlbCuTUiNOx35afeWk8r6tBPwXBTJzsp3jfMcdH5g7NKPzqX9oK7+0Ot7ZPk8dSGEJcDf0jj2TUDX+FrG694zivAC0RmHRjr1azgSx9RJu7PffT0sr24XxiqNdG6A2k2yZ9+yEPAwpYOKLZjqTpDrgMeGDZ6F4kyPyio7eiVIybcndaPrCwh49X0HHC7Ywf125Vp/Rlhp4DEqlFo35otit21mmd8hCEPD8ahgprxsmWDyDFbgQ9DT0rs59CJHaybtThlleZ5bP8+WKP+syfOKmbYyZgTS41RwpKi0zUy+jMZjnysGg1scNouQQgLYoHnND8sHN8ZkomQ/4QSzlPlVykcCSPZg2l3OQiKk5cYmgjTOanVnb1+ejLmZZ7n1oEJHMFnba8ncDVW6IBo=
- Authentication-results: smail; arc=none
- Cc: "pari-dev@pari.math.u-bordeaux.fr" <pari-dev@pari.math.u-bordeaux.fr>
- Delivery-date: Sat, 30 Dec 2023 15:35:53 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1703946950; bh=yqyZLWRo6edSx2j//CGIJJL23HKVOdAjTsdFWW/ApDM=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=eaadiXIJ4mwxtX3dp1AGyx0Noq/iDSmjKXvYwmW3Y3gQJnOenpclhEW32sdmkRsDk 4O2zbf5tUOFQenGbRW83qUvHq/mUKqofqrk+HPuiiudOFznKL7HrfWmM7OBomVtmKR AlftSUYLaTDCfgYv2DQIiTtcuRIbw7dK86scwByT9Z/Nwq+WqWH+15gYREpK0UD2C1 NIVMb3K1oiTZjyLm1Zv73x0U3MMN+NgVOvuFjZIhAtnI7TQ/yD590Uc/WQjSU4LkM/ LaCNVHDaBukd6l6zn16auZWU0BoxI+Q/8dV55DIb1T/iiMv97fcJ0kmlxUEThAoMu2 l5wHLsE5DXDvBiImEpLniymi8CSXiVVC4aGwMiMZqoiQ1yCnxcZXOnt+7DZ1HKvTR6 yHTTqpmfiP9hd/zXY94E3811nRM17f2wC8g1o0ydunCbKKSuu4107ylEYikOwvjlYS Ts9M2wGEAXQC2KL0zx5NBUfkA/QS3dqYr/pkXnky/Y4r5dzcrr4Roz9x5QlnbRA0F+ o2h0SzI2c7oEyDAu5dBjQyzLsb4dfZrpwDQnlQf6D/ECXAZtt2ERm3//CpRmOKOBfY CPTvEPUz5EHGtWzNbqV8rnh/3zaCHtdZ12RfLz08Jow0/pxKn5qura2LdDHxHBobbw VMCwAXi2vhfELIXLl4TZPtNM=
- In-reply-to: <B8182EFC-C7E4-0347-9C92-6188A217458E@hxcore.ol>
- Mail-followup-to: "ra.dwars@quicknet.nl" <ra.dwars@quicknet.nl>, "pari-dev@pari.math.u-bordeaux.fr" <pari-dev@pari.math.u-bordeaux.fr>
- References: <B8182EFC-C7E4-0347-9C92-6188A217458E@hxcore.ol>
Dear Rudolph,
as documented in ??13 (or ?? "L-function"), only "primitive" L-functions
are supported by PARI's implementation.
In particular for Dirichlet L-function (and more generally Hecke
L-functions), a character given to any modulus encodes the attached
*primitive* character. Thus all principal characters will yield the
L-function attached to the trivial character mod 1, i.e., the Riemann
zeta function.
The Dirichlet L-function attached to the actual non-primitive character
mod N differs from the primitive one (of conductor F) by a simple finite
Euler product
\prod_{p | N, p \nid F} (1 - \chi(p) p^{-s})
Just multiply the value returned by lfun() by this factor
(you may precompute the \chi(p)...).
If you're only interested in principal characters mod N, this is as
simple as
P = factor(N)[1,]; \\ can be precomputed
ZetaN(P, s) = zeta(s) * prod(j = 1, #P, 1 - P[j]^(-s));
Cheers,
K.B.
* ra.dwars@quicknet.nl [2023-12-30 15:04]:
> Dear developers,
>
>
> I’d like to generate Dirichlet L-functions and used for instance:
>
>
> default(realprecision,30)
>
> p = 2; q = 3;
>
> L =lfuncreate(Mod(p,q));
>
> print(lfun(L,2));
>
>
> This method works well for all non-principal characters, however seems
> to fail for the principal ones with q > 1:
>
>
> default(realprecision,30)
>
> p = 1; q = 3;
>
> L =lfuncreate(Mod(p,q));
>
> print(lfun(L,2));
>
>
> 1.64493406684822643647241516665 = (pi^2)/6
>
> which should be:
>
> 1.46216361497620127686436903702 = (4*pi^2)/27
>
>
> It always seems to default to the zeta-function even when the modulus
> is greater than 1.
>
>
> Maybe I do something wrong here and is the Mod(p,q) not allowed for
> principal characters. Keen to learn how to obtain the right outcome.
>
>
> Thanks,
>
> Rudolph
--
Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/