Georgi Guninski on Wed, 01 Feb 2023 15:27:24 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Numerical instability of j_1(x)=sin(Pi*x)^2+sin(Pi*(gamma(x)+1)/x)^2
|
- To: Georgi Guninski <gguninski@gmail.com>, pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: Numerical instability of j_1(x)=sin(Pi*x)^2+sin(Pi*(gamma(x)+1)/x)^2
- From: Georgi Guninski <gguninski@gmail.com>
- Date: Wed, 1 Feb 2023 16:25:57 +0200
- Delivery-date: Wed, 01 Feb 2023 15:27:25 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20210112; h=to:subject:message-id:date:from:in-reply-to:references:mime-version :from:to:cc:subject:date:message-id:reply-to; bh=NeKW1RtVIdbJDLTvhVRmENLEHODALC+U0PSGOByWbSQ=; b=LgOTOrJ1O1qT1V12tjWHBnrgmxP66UqCwhFjF1y5aN9tZBbZ17sV11IfIkvppztUnJ oDxwad6qxA+l3MltJZGqdNuZLAN8R/M3Ttsc3AdlnOi/u5/nSaDnkWgcn5fJLQ6Obc2w sXIXzC6k6Qp0uIp/z3Z4oTSONkAaePp/PxU37qPQPgBEau1DskPu0EyLMySVXkylgS75 qnKeGkDcCEsjagbVSP/6HdYNEM73sN4Z5sbLJzbNC70UggXzaE6raSG6nOleekT7M+r4 m4cR1IcPBXJPWWuc5U06uMgmG31ZeVBYL+/2w6V2oT23XXn361GQ0BgAOrLIywFLkt4a j4OQ==
- In-reply-to: <Y9otN2gImjqOttia@math.u-bordeaux.fr>
- References: <CAGUWgD8FFCsz8aT-Gm-DXBTNOHFDusuBXL7G4q4jbv1yyudKcQ@mail.gmail.com> <Y9otN2gImjqOttia@math.u-bordeaux.fr>
On Wed, Feb 1, 2023 at 11:13 AM Karim Belabas
<Karim.Belabas@math.u-bordeaux.fr> wrote:
> The result is about -exp(10^40) / (2*I), but the 'exponent' of 10^40 is
> so large that the resulting floating point number can't be represented in PARI.
> (Exponents are coded by C longs, so the hardcoded limit for exponents is 2^63;
> i.e. floats about 2^(2^63) ...)
>
Many thanks for all replies.
Doesn't the large exponent bound imply the complex numbers are bounded? :)
IIRC this is called "finitarism", but can't find it with a search.