Karim Belabas on Wed, 01 Feb 2023 10:14:42 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Numerical instability of j_1(x)=sin(Pi*x)^2+sin(Pi*(gamma(x)+1)/x)^2
|
- To: Georgi Guninski <gguninski@gmail.com>
- Subject: Re: Numerical instability of j_1(x)=sin(Pi*x)^2+sin(Pi*(gamma(x)+1)/x)^2
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Wed, 1 Feb 2023 10:13:27 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1675242801; c=relaxed/relaxed; bh=d5RTe+SF1lQ/P1iGCT2WviPamFldVTLAXu9TZq8WD/w=; h=DKIM-Signature:Date:From:To:Cc:Subject:Message-ID: Mail-Followup-To:References:MIME-Version:Content-Type: Content-Disposition:Content-Transfer-Encoding:In-Reply-To; b=wQ7SlJqm/s1h38h2A3lmvgUrWxcpFH3C8FfegE5+jpHP7cCeivcUYmNCsm1fUd9HX0vqFeP1J9AMOSUBYpKnDhqZ6nu1AFhJdXFZoXGiO0DtbJMJaKuDhDL0lqqVTbebeIRPiBp3LFYvpabEFhhjvuh4+D89GEku2dAOvV8UIOaQD/o421woibxCIZhemWU70pCGtLKCRHYazeI5GE9WVeyqYpS6IR36t35FIoPF6ADzxwckFlOgyB2c3QgbvR4+Vq3jHes9/h/t8sVP0qQWgu6MKqT9pZ3Zm063UkTlJ8FYrMo+NCOlI9tObSDGy0PXi/btW8YXOa1j941N6zrkbIiGFkDeSu2CArCOCIwiiXlck5hiWFqJCr986+zauXmnmUVqKLc9a1oyu8RNH8psoPR4/LWR7qxB+mS9RNLKfmsTAeV+Lt3P24GVcMJatx2k3w4nYpxX80VDI+Bu7w+9oLYytBme4eNb8sSBB84Q1eS1RsBSN1jBVqbDepxaaHch5dBu//WuPnr1tagQsxIS8Ul/1pYoB0ufZZMfvtP2C/cB+lVjuLgoI2USmahEFL9xP8k9FyTjn4eMec/d3L2BaPvC+F8ONg2OVsqJ7iUeysa3lHRaXcpDwSYO1Z0EsiWmY+J+z3HuAo0roT8hfLdhTA8SXo/bIJYE4D6zDCW2pqI=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1675242801; cv=none; b=XcWGmb9VqepKs15iYURS7ND4UPtX8qMtDS3uaXUxtZxSyV/6gSNletkYH79Fv2r1Z+iLrbRxAlzXIIWfdqcakNJxEIb5JGrhWkdlTTDVdqT+qNTI3bRN8YZ+AlLuGBeNusum98h1uVb0LrjHlNFNks3SicaiZggeZf8ZYx2avQoxi3KvOg5kwSXAqkktz4X5CMU7s3G1qMDEbY0vO9Avotk8cQ6kNhHcgWeUn/tV5WXMZDiTJAW+MFkJZ+woM4VyszLkQRz9B7ZoHDwHGuJu2WR5H1yLqFAtNo9+9sFhayadvY3i6FPWft90PdqSPvFFEj75M+b0e/F50449JR6vW12KA9YU6EU6mXakdGL0YiyVWLc0+6NEnu5q7oSExnmGNUn7smveZ0t41ET6xGI+J8Hu4svhwFg/oWV8ppNoL+GWcpiC9xOcvDR2LFR9pKE5weaSWb0rXImm0+uASCrY4DDV177n5ONRlTCnL2aL9bI7C2u+2IK/qVHpAAvCMiJYmWUZgXiWSanxTGKrtOlKa+U/zUAE9fo5pyX0M85qWTMpPyIQ1ejiNOJdnqQwDpZbn/AbBjn+lWGFkCZWu6OMtp3Z9Tq8Koj1rWfkdE04YgTvjs9Mi9jeFHT6hvdkurw0KGmFVtYmwU5EMV9QxlkxXqZFBKyqOVuCN5+IpWXsH08=
- Authentication-results: smail; arc=none
- Cc: pari-dev@pari.math.u-bordeaux.fr
- Delivery-date: Wed, 01 Feb 2023 10:14:42 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1675242801; bh=d5RTe+SF1lQ/P1iGCT2WviPamFldVTLAXu9TZq8WD/w=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=am3YylcMzHL9r1WEdcVdCl9vqQr2mwAwarW3tw8iwBeXjApb1YCQu962Xu18kxdCE PQOlPO4w9wib9t8UcKDacXhn94kPUypdw8a912VllE/5qopQVxiRzmu45FW54nuURY mBuTqm183b70QUpZWTEv3vX6wFs9R0hU9ctLcwXFumgfmcnfLD6Wl84aBpLI1N7c1g aznU0IyKq3xPdTr2eBYdRTpB0f6pmDnMCtb8gF80RSgKs2PKh/QFvNU/5HnrsRkZvq XZta4eAhIeGqJ6GXiB621UY7DPUvKQVtNdp2dLlqWHHSMGHCijEPa+6NruhgY2RvS+ m3+GIy9Yye5sNqAM2KKuj+bIhkdIbFV4IHw6ngofnn/qlG4WbyfzuU38KuQPEN9BE5 nc/IP7EWSVToCABQPjniNoIjPeeoxWHOGnwbgalWJM14VBJU9v7NirAMfdYZSjR2Md d/nqiQ3fVVIEyPb2bmgHEznOym2PJFaFw5YMtxjaagbPTfrMxkMMBFhs5Dfbob7h7f NjGxOljZh9wcjTYKodaadQtaKsblvVQhlls7T3DDglB60Ce9WGfg0weaIB3vCTPecV ChM+gJSpeTfhYs7u68FeO/LEYHj9TIyqaffMjn6+syvIyRTM4baaX2ZVXwVu9Ya1Nr pRJuT15KALkn4FDQjioARkHc=
- In-reply-to: <CAGUWgD8FFCsz8aT-Gm-DXBTNOHFDusuBXL7G4q4jbv1yyudKcQ@mail.gmail.com>
- Mail-followup-to: Georgi Guninski <gguninski@gmail.com>, pari-dev@pari.math.u-bordeaux.fr
- References: <CAGUWgD8FFCsz8aT-Gm-DXBTNOHFDusuBXL7G4q4jbv1yyudKcQ@mail.gmail.com>
* Georgi Guninski [2023-02-01 08:51]:
> The function:
>
> j_1(x)=sin(Pi*x)^2+sin(Pi*(gamma(x)+1)/x)^2
>
> has real zeros at the primes for x>1.
[...]
> ? j_1(40.0+20.*I)
> fails in pari, but I don't care about this.
[...]
For the record, the failure is related to
(10:05) gp > sin(10^40 * I)
*** at top-level: sin(10^40*I)
*** ^------------
*** sin: overflow in expo().
The result is about -exp(10^40) / (2*I), but the 'exponent' of 10^40 is
so large that the resulting floating point number can't be represented in PARI.
(Exponents are coded by C longs, so the hardcoded limit for exponents is 2^63;
i.e. floats about 2^(2^63) ...)
Cheers,
K.B.
--
Pr Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/
`