Jason Moxham on Sun, 05 Jul 2009 16:25:23 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

Re: Re: Some bugs?



----- Original Message ----- From: "Jason Moxham" <jason@njkfrudils.plus.com>
To: <jason@njkfrudils.plus.com>
Sent: Sunday, July 05, 2009 3:13 PM
Subject: Fwd: Re: Some bugs?



----------  Forwarded Message  ----------

Subject: Re: Some bugs?
Date: Sunday 05 Jul 2009
From: Bill Allombert <Bill.Allombert@math.u-bordeaux1.fr>
To: pari-dev@list.cr.yp.to

On Sat, Jul 04, 2009 at 09:32:14PM +0100, Jason Moxham wrote:
On Sat, Jul 04, 2009 at 08:31:40PM +0100, Jason Moxham wrote:
this fixes polred,rnf,rnfkummer  tests for Win32 MSVC

Good!

Bill.

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 ***   at top-level: ...Mod(1,10007)*(x^30+9557*x^29+7812*x^28+7090*x
 ***                                             ^--------------------
 *** _^s: degree overflow in pow_monome.

This is very wrong: x^29 is absolutly safe. There are some corruption
going on.

Does this command work ?
{
factorff(x^30 + 7812*x^28 + 7090*x^27 + 7645*x^26 + 4110*x^25 + 3307*x^24 +
5763*x^23 + 7900*x^22 + 3872*x^21 + 8123*x^20 + 4076*x^19 + 3265*x^18 +
3777*x^17 + 3398*x^16 + 5674*x^15 + 4018*x^14 + 6820*x^13 + 6479*x^12 +
984*x^11 + 5652*x^10 + 1129*x^9 + 7573*x^8 + 1822*x^7 + 837*x^6 + 4169*x^5 +
4787*x^4 + 1616*x^3 + 5185*x^2 + 2649*x + 1483, 10007, a^30 + a + 2)
}

Bill.

-------------------------------------------------------

yes it works , or at least doesn't crash , output is
           GP/PARI CALCULATOR Version 2.4.3 (development svn-11782)
            ix86 running Windows 3.2 (ix86 kernel) 32-bit version
                       compiled: Jul  4 2009, MSVC-1500
            (readline not compiled in, extended help not enabled)

                    Copyright (C) 2000-2008 The PARI Group

PARI/GP is free software, covered by the GNU General Public License, and comes
WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.

parisize = 4000000, primelimit = 500509
%1 =
[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(1337, 10007)*a^29 + Mod(688, 10007)*a^28 + Mod(7757, 10007)*a^27 + Mod(2143, 10007)*a^26 + Mod(8871, 10007)*a^25 + Mod(1323, 10007)*a^24 + Mod(1652, 10007)*a^23 + Mod(6298, 10007)*a^22 + Mod(6845, 10007)*a^21 + Mod(3124, 10007)*a^20 + Mod(9508, 10007)*a^19 + Mod(6489, 10007)*a^18 + Mod(6703, 10007)*a^17 + Mod(9860, 10007)*a^16 + Mod(6977, 10007)*a^15 + Mod(4315, 10007)*a^14 + Mod(3494, 10007)*a^13 + Mod(963, 10007)*a^12 + Mod(5498, 10007)*a^11 + Mod(9757, 10007)*a^10 + Mod(1493, 10007)*a^9 + Mod(7675, 10007)*a^8 + Mod(2403, 10007)*a^7 + Mod(9005, 10007)*a^6 + Mod(4066, 10007)*a^5 + Mod(8121, 10007)*a^4 + Mod(8066, 10007)*a^3 + Mod(5160, 10007)*a^2 + Mod(6710, 10007)*a + Mod(2759, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(1501, 10007)*a^29 + Mod(2294, 10007)*a^28 + Mod(3095, 10007)*a^27 + Mod(1504, 10007)*a^26 + Mod(1145, 10007)*a^25 + Mod(3133, 10007)*a^24 + Mod(5258, 10007)*a^23 + Mod(8533, 10007)*a^22 + Mod(5707, 10007)*a^21 + Mod(4520, 10007)*a^20 + Mod(9128, 10007)*a^19 + Mod(2230, 10007)*a^18 + Mod(9653, 10007)*a^17 + Mod(2371, 10007)*a^16 + Mod(5225, 10007)*a^15 + Mod(4234, 10007)*a^14 + Mod(9857, 10007)*a^13 + Mod(5020, 10007)*a^12 + Mod(3430, 10007)*a^11 + Mod(5437, 10007)*a^10 + Mod(4185, 10007)*a^9 + Mod(7344, 10007)*a^8 + Mod(2937, 10007)*a^7 + Mod(1371, 10007)*a^6 + Mod(9423, 10007)*a^5 + Mod(2808, 10007)*a^4 + Mod(6640, 10007)*a^3 + Mod(9978, 10007)*a^2 + Mod(3444, 10007)*a + Mod(5337, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(1705, 10007)*a^29 + Mod(5446, 10007)*a^28 + Mod(6597, 10007)*a^27 + Mod(716, 10007)*a^26 + Mod(2362, 10007)*a^25 + Mod(2488, 10007)*a^24 + Mod(3598, 10007)*a^23 + Mod(9555, 10007)*a^22 + Mod(3404, 10007)*a^21 + Mod(9173, 10007)*a^20 + Mod(2956, 10007)*a^19 + Mod(6683, 10007)*a^18 + Mod(6036, 10007)*a^17 + Mod(9133, 10007)*a^16 + Mod(7739, 10007)*a^15 + Mod(4602, 10007)*a^14 + Mod(1262, 10007)*a^13 + Mod(7917, 10007)*a^12 + Mod(8250, 10007)*a^11 + Mod(8139, 10007)*a^10 + Mod(4916, 10007)*a^9 + Mod(3633, 10007)*a^8 + Mod(6940, 10007)*a^7 + Mod(2556, 10007)*a^6 + Mod(7345, 10007)*a^5 + Mod(7367, 10007)*a^4 + Mod(3881, 10007)*a^3 + Mod(1845, 10007)*a^2 + Mod(8193, 10007)*a + Mod(9537, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(3545, 10007)*a^29 + Mod(8962, 10007)*a^28 + Mod(9718, 10007)*a^27 + Mod(8262, 10007)*a^26 + Mod(2490, 10007)*a^25 + Mod(5526, 10007)*a^24 + Mod(8003, 10007)*a^23 + Mod(3902, 10007)*a^22 + Mod(4808, 10007)*a^21 + Mod(6733, 10007)*a^20 + Mod(9658, 10007)*a^19 + Mod(1898, 10007)*a^18 + Mod(8375, 10007)*a^17 + Mod(8478, 10007)*a^16 + Mod(3465, 10007)*a^15 + Mod(2215, 10007)*a^14 + Mod(7784, 10007)*a^13 + Mod(8138, 10007)*a^12 + Mod(3144, 10007)*a^11 + Mod(7, 10007)*a^10 + Mod(7261, 10007)*a^9 + Mod(8673, 10007)*a^8 + Mod(3171, 10007)*a^7 + Mod(8030, 10007)*a^6 + Mod(937, 10007)*a^5 + Mod(5461, 10007)*a^4 + Mod(460, 10007)*a^3 + Mod(2536, 10007)*a^2 + Mod(7838, 10007)*a + Mod(2892, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(5125, 10007)*a^29 + Mod(357, 10007)*a^28 + Mod(2539, 10007)*a^27 + Mod(9609, 10007)*a^26 + Mod(8653, 10007)*a^25 + Mod(3158, 10007)*a^24 + Mod(352, 10007)*a^23 + Mod(9814, 10007)*a^22 + Mod(8361, 10007)*a^21 + Mod(150, 10007)*a^20 + Mod(848, 10007)*a^19 + Mod(1620, 10007)*a^18 + Mod(4936, 10007)*a^17 + Mod(1676, 10007)*a^16 + Mod(9572, 10007)*a^15 + Mod(3477, 10007)*a^14 + Mod(8736, 10007)*a^13 + Mod(906, 10007)*a^12 + Mod(1365, 10007)*a^11 + Mod(243, 10007)*a^10 + Mod(1253, 10007)*a^9 + Mod(3666, 10007)*a^8 + Mod(4433, 10007)*a^7 + Mod(2979, 10007)*a^6 + Mod(5004, 10007)*a^5 + Mod(6432, 10007)*a^4 + Mod(1481, 10007)*a^3 + Mod(2311, 10007)*a^2 + Mod(5466, 10007)*a + Mod(7755, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(6801, 10007)*a^29 + Mod(2267, 10007)*a^28 + Mod(315, 10007)*a^27 + Mod(7787, 10007)*a^26 + Mod(6500, 10007)*a^25 + Mod(4386, 10007)*a^24 + Mod(1151, 10007)*a^23 + Mod(1926, 10007)*a^22 + Mod(896, 10007)*a^21 + Mod(6321, 10007)*a^20 + Mod(7930, 10007)*a^19 + Mod(1094, 10007)*a^18 + Mod(4325, 10007)*a^17 + Mod(8510, 10007)*a^16 + Mod(7050, 10007)*a^15 + Mod(1171, 10007)*a^14 + Mod(8895, 10007)*a^13 + Mod(7077, 10007)*a^12 + Mod(8334, 10007)*a^11 + Mod(6438, 10007)*a^10 + Mod(906, 10007)*a^9 + Mod(9037, 10007)*a^8 + Mod(130, 10007)*a^7 + Mod(6080, 10007)*a^6 + Mod(3246, 10007)*a^5 + Mod(9839, 10007)*a^4 + Mod(9493, 10007)*a^3 + Mod(8191, 10007)*a^2 + Mod(8377, 10007)*a + Mod(3789, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(114, 10007)*a^29 + Mod(3456, 10007)*a^28 + Mod(5629, 10007)*a^27 + Mod(1226, 10007)*a^26 + Mod(707, 10007)*a^25 + Mod(5229, 10007)*a^24 + Mod(7976, 10007)*a^23 + Mod(1939, 10007)*a^22 + Mod(9060, 10007)*a^21 + Mod(3323, 10007)*a^20 + Mod(47, 10007)*a^19 + Mod(8966, 10007)*a^18 + Mod(9815, 10007)*a^17 + Mod(7060, 10007)*a^16 + Mod(4442, 10007)*a^15 + Mod(6032, 10007)*a^14 + Mod(8417, 10007)*a^13 + Mod(433, 10007)*a^12 + Mod(6634, 10007)*a^11 + Mod(481, 10007)*a^10 + Mod(5400, 10007)*a^9 + Mod(8633, 10007)*a^8 + Mod(3369, 10007)*a^7 + Mod(4705, 10007)*a^6 + Mod(1861, 10007)*a^5 + Mod(9712, 10007)*a^4 + Mod(5035, 10007)*a^3 + Mod(9364, 10007)*a^2 + Mod(4395, 10007)*a + Mod(4912, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(3480, 10007)*a^29 + Mod(3001, 10007)*a^28 + Mod(2454, 10007)*a^27 + Mod(7839, 10007)*a^26 + Mod(9996, 10007)*a^25 + Mod(8491, 10007)*a^24 + Mod(9426, 10007)*a^23 + Mod(8466, 10007)*a^22 + Mod(4692, 10007)*a^21 + Mod(3880, 10007)*a^20 + Mod(1452, 10007)*a^19 + Mod(477, 10007)*a^18 + Mod(7056, 10007)*a^17 + Mod(517, 10007)*a^16 + Mod(3220, 10007)*a^15 + Mod(2725, 10007)*a^14 + Mod(1358, 10007)*a^13 + Mod(913, 10007)*a^12 + Mod(1850, 10007)*a^11 + Mod(9362, 10007)*a^10 + Mod(4229, 10007)*a^9 + Mod(3175, 10007)*a^8 + Mod(2748, 10007)*a^7 + Mod(5811, 10007)*a^6 + Mod(2718, 10007)*a^5 + Mod(74, 10007)*a^4 + Mod(4168, 10007)*a^3 + Mod(3829, 10007)*a^2 + Mod(6051, 10007)*a + Mod(2937, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(2279, 10007)*a^29 + Mod(4601, 10007)*a^28 + Mod(2765, 10007)*a^27 + Mod(7517, 10007)*a^26 + Mod(7570, 10007)*a^25 + Mod(9761, 10007)*a^24 + Mod(2454, 10007)*a^23 + Mod(1563, 10007)*a^22 + Mod(4505, 10007)*a^21 + Mod(8751, 10007)*a^20 + Mod(303, 10007)*a^19 + Mod(754, 10007)*a^18 + Mod(4500, 10007)*a^17 + Mod(720, 10007)*a^16 + Mod(8332, 10007)*a^15 + Mod(2180, 10007)*a^14 + Mod(1865, 10007)*a^13 + Mod(2338, 10007)*a^12 + Mod(440, 10007)*a^11 + Mod(5546, 10007)*a^10 + Mod(8404, 10007)*a^9 + Mod(5468, 10007)*a^8 + Mod(8658, 10007)*a^7 + Mod(4794, 10007)*a^6 + Mod(3478, 10007)*a^5 + Mod(2350, 10007)*a^4 + Mod(2833, 10007)*a^3 + Mod(1868, 10007)*a^2 + Mod(6007, 10007)*a + Mod(5337, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(3525, 10007)*a^29 + Mod(7294, 10007)*a^28 + Mod(5672, 10007)*a^27 + Mod(8132, 10007)*a^26 + Mod(3150, 10007)*a^25 + Mod(1006, 10007)*a^24 + Mod(4403, 10007)*a^23 + Mod(3496, 10007)*a^22 + Mod(952, 10007)*a^21 + Mod(7293, 10007)*a^20 + Mod(2439, 10007)*a^19 + Mod(7428, 10007)*a^18 + Mod(8868, 10007)*a^17 + Mod(7710, 10007)*a^16 + Mod(5859, 10007)*a^15 + Mod(6181, 10007)*a^14 + Mod(1262, 10007)*a^13 + Mod(9836, 10007)*a^12 + Mod(7397, 10007)*a^11 + Mod(4165, 10007)*a^10 + Mod(1056, 10007)*a^9 + Mod(2607, 10007)*a^8 + Mod(4978, 10007)*a^7 + Mod(5306, 10007)*a^6 + Mod(7363, 10007)*a^5 + Mod(9839, 10007)*a^4 + Mod(5007, 10007)*a^3 + Mod(9792, 10007)*a^2 + Mod(8085, 10007)*a + Mod(7984, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(2312, 10007)*a^29 + Mod(3871, 10007)*a^28 + Mod(6493, 10007)*a^27 + Mod(7592, 10007)*a^26 + Mod(491, 10007)*a^25 + Mod(7631, 10007)*a^24 + Mod(2502, 10007)*a^23 + Mod(8273, 10007)*a^22 + Mod(1160, 10007)*a^21 + Mod(435, 10007)*a^20 + Mod(8312, 10007)*a^19 + Mod(781, 10007)*a^18 + Mod(14, 10007)*a^17 + Mod(6839, 10007)*a^16 + Mod(5109, 10007)*a^15 + Mod(8426, 10007)*a^14 + Mod(4697, 10007)*a^13 + Mod(3291, 10007)*a^12 + Mod(2020, 10007)*a^11 + Mod(6600, 10007)*a^10 + Mod(9720, 10007)*a^9 + Mod(4906, 10007)*a^8 + Mod(640, 10007)*a^7 + Mod(5179, 10007)*a^6 + Mod(4344, 10007)*a^5 + Mod(4740, 10007)*a^4 + Mod(494, 10007)*a^3 + Mod(8425, 10007)*a^2 + Mod(9409, 10007)*a + Mod(8371, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(4539, 10007)*a^29 + Mod(937, 10007)*a^28 + Mod(4419, 10007)*a^27 + Mod(7381, 10007)*a^26 + Mod(5910, 10007)*a^25 + Mod(8851, 10007)*a^24 + Mod(7421, 10007)*a^23 + Mod(6769, 10007)*a^22 + Mod(4149, 10007)*a^21 + Mod(5445, 10007)*a^20 + Mod(2972, 10007)*a^19 + Mod(3372, 10007)*a^18 + Mod(8196, 10007)*a^17 + Mod(2817, 10007)*a^16 + Mod(6181, 10007)*a^15 + Mod(265, 10007)*a^14 + Mod(6977, 10007)*a^13 + Mod(788, 10007)*a^12 + Mod(8604, 10007)*a^11 + Mod(7067, 10007)*a^10 + Mod(7152, 10007)*a^9 + Mod(3563, 10007)*a^8 + Mod(5943, 10007)*a^7 + Mod(956, 10007)*a^6 + Mod(6697, 10007)*a^5 + Mod(2365, 10007)*a^4 + Mod(4346, 10007)*a^3 + Mod(7674, 10007)*a^2 + Mod(133, 10007)*a + Mod(2960, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(4211, 10007)*a^29 + Mod(1064, 10007)*a^28 + Mod(4137, 10007)*a^27 + Mod(5371, 10007)*a^26 + Mod(7713, 10007)*a^25 + Mod(181, 10007)*a^24 + Mod(4499, 10007)*a^23 + Mod(4871, 10007)*a^22 + Mod(8324, 10007)*a^21 + Mod(7082, 10007)*a^20 + Mod(1751, 10007)*a^19 + Mod(1468, 10007)*a^18 + Mod(8650, 10007)*a^17 + Mod(5070, 10007)*a^16 + Mod(393, 10007)*a^15 + Mod(9034, 10007)*a^14 + Mod(4210, 10007)*a^13 + Mod(9334, 10007)*a^12 + Mod(75, 10007)*a^11 + Mod(8151, 10007)*a^10 + Mod(706, 10007)*a^9 + Mod(3180, 10007)*a^8 + Mod(383, 10007)*a^7 + Mod(5096, 10007)*a^6 + Mod(94, 10007)*a^5 + Mod(9336, 10007)*a^4 + Mod(5715, 10007)*a^3 + Mod(2808, 10007)*a^2 + Mod(4476, 10007)*a + Mod(9206, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(8555, 10007)*a^29 + Mod(3181, 10007)*a^28 + Mod(4903, 10007)*a^27 + Mod(5504, 10007)*a^26 + Mod(1501, 10007)*a^25 + Mod(5731, 10007)*a^24 + Mod(8819, 10007)*a^23 + Mod(2061, 10007)*a^22 + Mod(5196, 10007)*a^21 + Mod(3840, 10007)*a^20 + Mod(4763, 10007)*a^19 + Mod(1623, 10007)*a^18 + Mod(1323, 10007)*a^17 + Mod(8999, 10007)*a^16 + Mod(1696, 10007)*a^15 + Mod(7336, 10007)*a^14 + Mod(1391, 10007)*a^13 + Mod(7006, 10007)*a^12 + Mod(7078, 10007)*a^11 + Mod(7826, 10007)*a^10 + Mod(6163, 10007)*a^9 + Mod(1501, 10007)*a^8 + Mod(8084, 10007)*a^7 + Mod(2512, 10007)*a^6 + Mod(5570, 10007)*a^5 + Mod(4957, 10007)*a^4 + Mod(4816, 10007)*a^3 + Mod(5149, 10007)*a^2 + Mod(905, 10007)*a + Mod(6175, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(4441, 10007)*a^29 + Mod(2464, 10007)*a^28 + Mod(7765, 10007)*a^27 + Mod(5561, 10007)*a^26 + Mod(5851, 10007)*a^25 + Mod(9798, 10007)*a^24 + Mod(7876, 10007)*a^23 + Mod(8405, 10007)*a^22 + Mod(3165, 10007)*a^21 + Mod(9612, 10007)*a^20 + Mod(6174, 10007)*a^19 + Mod(8945, 10007)*a^18 + Mod(2233, 10007)*a^17 + Mod(5478, 10007)*a^16 + Mod(4517, 10007)*a^15 + Mod(8915, 10007)*a^14 + Mod(20, 10007)*a^13 + Mod(9784, 10007)*a^12 + Mod(7218, 10007)*a^11 + Mod(9591, 10007)*a^10 + Mod(4558, 10007)*a^9 + Mod(5053, 10007)*a^8 + Mod(8595, 10007)*a^7 + Mod(6129, 10007)*a^6 + Mod(2451, 10007)*a^5 + Mod(376, 10007)*a^4 + Mod(8375, 10007)*a^3 + Mod(4412, 10007)*a^2 + Mod(191, 10007)*a + Mod(6946, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(1224, 10007)*a^29 + Mod(4165, 10007)*a^28 + Mod(8321, 10007)*a^27 + Mod(388, 10007)*a^26 + Mod(6962, 10007)*a^25 + Mod(9341, 10007)*a^24 + Mod(4557, 10007)*a^23 + Mod(2125, 10007)*a^22 + Mod(318, 10007)*a^21 + Mod(7264, 10007)*a^20 + Mod(8901, 10007)*a^19 + Mod(8155, 10007)*a^18 + Mod(6589, 10007)*a^17 + Mod(1129, 10007)*a^16 + Mod(8744, 10007)*a^15 + Mod(7820, 10007)*a^14 + Mod(3559, 10007)*a^13 + Mod(5849, 10007)*a^12 + Mod(545, 10007)*a^11 + Mod(2026, 10007)*a^10 + Mod(7534, 10007)*a^9 + Mod(8058, 10007)*a^8 + Mod(911, 10007)*a^7 + Mod(3395, 10007)*a^6 + Mod(2352, 10007)*a^5 + Mod(863, 10007)*a^4 + Mod(1790, 10007)*a^3 + Mod(2568, 10007)*a^2 + Mod(465, 10007)*a + Mod(6990, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(4514, 10007)*a^29 + Mod(3170, 10007)*a^28 + Mod(6377, 10007)*a^27 + Mod(3188, 10007)*a^26 + Mod(4260, 10007)*a^25 + Mod(4209, 10007)*a^24 + Mod(8671, 10007)*a^23 + Mod(6294, 10007)*a^22 + Mod(5469, 10007)*a^21 + Mod(2772, 10007)*a^20 + Mod(7265, 10007)*a^19 + Mod(5465, 10007)*a^18 + Mod(7548, 10007)*a^17 + Mod(3816, 10007)*a^16 + Mod(7073, 10007)*a^15 + Mod(7883, 10007)*a^14 + Mod(7245, 10007)*a^13 + Mod(7680, 10007)*a^12 + Mod(6384, 10007)*a^11 + Mod(5163, 10007)*a^10 + Mod(8387, 10007)*a^9 + Mod(9553, 10007)*a^8 + Mod(6900, 10007)*a^7 + Mod(663, 10007)*a^6 + Mod(3045, 10007)*a^5 + Mod(8918, 10007)*a^4 + Mod(7708, 10007)*a^3 + Mod(2109, 10007)*a^2 + Mod(1823, 10007)*a + Mod(2494, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(9393, 10007)*a^29 + Mod(9621, 10007)*a^28 + Mod(6492, 10007)*a^27 + Mod(9733, 10007)*a^26 + Mod(8686, 10007)*a^25 + Mod(7666, 10007)*a^24 + Mod(9602, 10007)*a^23 + Mod(8704, 10007)*a^22 + Mod(6664, 10007)*a^21 + Mod(8718, 10007)*a^20 + Mod(2698, 10007)*a^19 + Mod(5071, 10007)*a^18 + Mod(2020, 10007)*a^17 + Mod(7154, 10007)*a^16 + Mod(6594, 10007)*a^15 + Mod(594, 10007)*a^14 + Mod(9843, 10007)*a^13 + Mod(2257, 10007)*a^12 + Mod(7424, 10007)*a^11 + Mod(6855, 10007)*a^10 + Mod(4264, 10007)*a^9 + Mod(8496, 10007)*a^8 + Mod(8042, 10007)*a^7 + Mod(8369, 10007)*a^6 + Mod(1608, 10007)*a^5 + Mod(9425, 10007)*a^4 + Mod(9864, 10007)*a^3 + Mod(6545, 10007)*a^2 + Mod(8339, 10007)*a + Mod(1648, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(5566, 10007)*a^29 + Mod(7543, 10007)*a^28 + Mod(2242, 10007)*a^27 + Mod(4446, 10007)*a^26 + Mod(4156, 10007)*a^25 + Mod(209, 10007)*a^24 + Mod(2131, 10007)*a^23 + Mod(1602, 10007)*a^22 + Mod(6842, 10007)*a^21 + Mod(395, 10007)*a^20 + Mod(3833, 10007)*a^19 + Mod(1062, 10007)*a^18 + Mod(7774, 10007)*a^17 + Mod(4529, 10007)*a^16 + Mod(5490, 10007)*a^15 + Mod(1092, 10007)*a^14 + Mod(9987, 10007)*a^13 + Mod(223, 10007)*a^12 + Mod(2789, 10007)*a^11 + Mod(416, 10007)*a^10 + Mod(5449, 10007)*a^9 + Mod(4954, 10007)*a^8 + Mod(1412, 10007)*a^7 + Mod(3878, 10007)*a^6 + Mod(7556, 10007)*a^5 + Mod(9631, 10007)*a^4 + Mod(1632, 10007)*a^3 + Mod(5595, 10007)*a^2 + Mod(9816, 10007)*a + Mod(3030, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(8783, 10007)*a^29 + Mod(5842, 10007)*a^28 + Mod(1686, 10007)*a^27 + Mod(9619, 10007)*a^26 + Mod(3045, 10007)*a^25 + Mod(666, 10007)*a^24 + Mod(5450, 10007)*a^23 + Mod(7882, 10007)*a^22 + Mod(9689, 10007)*a^21 + Mod(2743, 10007)*a^20 + Mod(1106, 10007)*a^19 + Mod(1852, 10007)*a^18 + Mod(3418, 10007)*a^17 + Mod(8878, 10007)*a^16 + Mod(1263, 10007)*a^15 + Mod(2187, 10007)*a^14 + Mod(6448, 10007)*a^13 + Mod(4158, 10007)*a^12 + Mod(9462, 10007)*a^11 + Mod(7981, 10007)*a^10 + Mod(2473, 10007)*a^9 + Mod(1949, 10007)*a^8 + Mod(9096, 10007)*a^7 + Mod(6612, 10007)*a^6 + Mod(7655, 10007)*a^5 + Mod(9144, 10007)*a^4 + Mod(8217, 10007)*a^3 + Mod(7439, 10007)*a^2 + Mod(9542, 10007)*a + Mod(6625, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(5773, 10007)*a^29 + Mod(2641, 10007)*a^28 + Mod(9775, 10007)*a^27 + Mod(9418, 10007)*a^26 + Mod(3910, 10007)*a^25 + Mod(1881, 10007)*a^24 + Mod(4221, 10007)*a^23 + Mod(2002, 10007)*a^22 + Mod(5966, 10007)*a^21 + Mod(2060, 10007)*a^20 + Mod(9276, 10007)*a^19 + Mod(2078, 10007)*a^18 + Mod(7220, 10007)*a^17 + Mod(1318, 10007)*a^16 + Mod(4291, 10007)*a^15 + Mod(1350, 10007)*a^14 + Mod(7151, 10007)*a^13 + Mod(2119, 10007)*a^12 + Mod(6214, 10007)*a^11 + Mod(5217, 10007)*a^10 + Mod(3811, 10007)*a^9 + Mod(5765, 10007)*a^8 + Mod(7720, 10007)*a^7 + Mod(7312, 10007)*a^6 + Mod(664, 10007)*a^5 + Mod(6151, 10007)*a^4 + Mod(7300, 10007)*a^3 + Mod(6444, 10007)*a^2 + Mod(5393, 10007)*a + Mod(6046, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(2819, 10007)*a^29 + Mod(3792, 10007)*a^28 + Mod(2801, 10007)*a^27 + Mod(220, 10007)*a^26 + Mod(2165, 10007)*a^25 + Mod(8533, 10007)*a^24 + Mod(1685, 10007)*a^23 + Mod(6581, 10007)*a^22 + Mod(3932, 10007)*a^21 + Mod(1509, 10007)*a^20 + Mod(5784, 10007)*a^19 + Mod(2801, 10007)*a^18 + Mod(937, 10007)*a^17 + Mod(4759, 10007)*a^16 + Mod(283, 10007)*a^15 + Mod(8087, 10007)*a^14 + Mod(8863, 10007)*a^13 + Mod(6479, 10007)*a^12 + Mod(3674, 10007)*a^11 + Mod(2445, 10007)*a^10 + Mod(9155, 10007)*a^9 + Mod(2325, 10007)*a^8 + Mod(5185, 10007)*a^7 + Mod(291, 10007)*a^6 + Mod(7512, 10007)*a^5 + Mod(4565, 10007)*a^4 + Mod(7653, 10007)*a^3 + Mod(2167, 10007)*a^2 + Mod(6632, 10007)*a + Mod(4633, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(6331, 10007)*a^29 + Mod(8857, 10007)*a^28 + Mod(1269, 10007)*a^27 + Mod(9359, 10007)*a^26 + Mod(9883, 10007)*a^25 + Mod(3950, 10007)*a^24 + Mod(7012, 10007)*a^23 + Mod(6231, 10007)*a^22 + Mod(2284, 10007)*a^21 + Mod(2180, 10007)*a^20 + Mod(9183, 10007)*a^19 + Mod(4272, 10007)*a^18 + Mod(7352, 10007)*a^17 + Mod(6221, 10007)*a^16 + Mod(5750, 10007)*a^15 + Mod(3052, 10007)*a^14 + Mod(9096, 10007)*a^13 + Mod(3309, 10007)*a^12 + Mod(1559, 10007)*a^11 + Mod(9866, 10007)*a^10 + Mod(3604, 10007)*a^9 + Mod(7796, 10007)*a^8 + Mod(8250, 10007)*a^7 + Mod(1524, 10007)*a^6 + Mod(7854, 10007)*a^5 + Mod(9613, 10007)*a^4 + Mod(8953, 10007)*a^3 + Mod(5973, 10007)*a^2 + Mod(1416, 10007)*a + Mod(4584, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(6067, 10007)*a^29 + Mod(8188, 10007)*a^28 + Mod(6255, 10007)*a^27 + Mod(4546, 10007)*a^26 + Mod(717, 10007)*a^25 + Mod(9858, 10007)*a^24 + Mod(3141, 10007)*a^23 + Mod(7047, 10007)*a^22 + Mod(70, 10007)*a^21 + Mod(662, 10007)*a^20 + Mod(1544, 10007)*a^19 + Mod(6214, 10007)*a^18 + Mod(77, 10007)*a^17 + Mod(207, 10007)*a^16 + Mod(488, 10007)*a^15 + Mod(192, 10007)*a^14 + Mod(8182, 10007)*a^13 + Mod(52, 10007)*a^12 + Mod(9345, 10007)*a^11 + Mod(4007, 10007)*a^10 + Mod(4709, 10007)*a^9 + Mod(1052, 10007)*a^8 + Mod(1969, 10007)*a^7 + Mod(2213, 10007)*a^6 + Mod(7161, 10007)*a^5 + Mod(579, 10007)*a^4 + Mod(3879, 10007)*a^3 + Mod(1040, 10007)*a^2 + Mod(2504, 10007)*a + Mod(9107, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(7672, 10007)*a^29 + Mod(9884, 10007)*a^28 + Mod(8448, 10007)*a^27 + Mod(9106, 10007)*a^26 + Mod(5231, 10007)*a^25 + Mod(8538, 10007)*a^24 + Mod(9816, 10007)*a^23 + Mod(7805, 10007)*a^22 + Mod(3600, 10007)*a^21 + Mod(2457, 10007)*a^20 + Mod(4787, 10007)*a^19 + Mod(964, 10007)*a^18 + Mod(571, 10007)*a^17 + Mod(7883, 10007)*a^16 + Mod(9404, 10007)*a^15 + Mod(1982, 10007)*a^14 + Mod(9632, 10007)*a^13 + Mod(7867, 10007)*a^12 + Mod(9401, 10007)*a^11 + Mod(7684, 10007)*a^10 + Mod(3829, 10007)*a^9 + Mod(3657, 10007)*a^8 + Mod(7392, 10007)*a^7 + Mod(785, 10007)*a^6 + Mod(6613, 10007)*a^5 + Mod(2472, 10007)*a^4 + Mod(3339, 10007)*a^3 + Mod(7113, 10007)*a^2 + Mod(3714, 10007)*a + Mod(6881, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(1465, 10007)*a^29 + Mod(3839, 10007)*a^28 + Mod(9790, 10007)*a^27 + Mod(443, 10007)*a^26 + Mod(954, 10007)*a^25 + Mod(5048, 10007)*a^24 + Mod(258, 10007)*a^23 + Mod(6612, 10007)*a^22 + Mod(9503, 10007)*a^21 + Mod(9993, 10007)*a^20 + Mod(7355, 10007)*a^19 + Mod(5276, 10007)*a^18 + Mod(8830, 10007)*a^17 + Mod(8598, 10007)*a^16 + Mod(8563, 10007)*a^15 + Mod(5625, 10007)*a^14 + Mod(8431, 10007)*a^13 + Mod(8855, 10007)*a^12 + Mod(4828, 10007)*a^11 + Mod(2326, 10007)*a^10 + Mod(2642, 10007)*a^9 + Mod(3209, 10007)*a^8 + Mod(5276, 10007)*a^7 + Mod(1795, 10007)*a^6 + Mod(6429, 10007)*a^5 + Mod(1841, 10007)*a^4 + Mod(6867, 10007)*a^3 + Mod(9887, 10007)*a^2 + Mod(5877, 10007)*a + Mod(2657, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(8271, 10007)*a^29 + Mod(2180, 10007)*a^28 + Mod(1353, 10007)*a^27 + Mod(8212, 10007)*a^26 + Mod(9748, 10007)*a^25 + Mod(380, 10007)*a^24 + Mod(1635, 10007)*a^23 + Mod(716, 10007)*a^22 + Mod(4328, 10007)*a^21 + Mod(596, 10007)*a^20 + Mod(7094, 10007)*a^19 + Mod(4374, 10007)*a^18 + Mod(6845, 10007)*a^17 + Mod(2879, 10007)*a^16 + Mod(621, 10007)*a^15 + Mod(9714, 10007)*a^14 + Mod(8834, 10007)*a^13 + Mod(371, 10007)*a^12 + Mod(6414, 10007)*a^11 + Mod(5701, 10007)*a^10 + Mod(4628, 10007)*a^9 + Mod(2424, 10007)*a^8 + Mod(2438, 10007)*a^7 + Mod(4035, 10007)*a^6 + Mod(8764, 10007)*a^5 + Mod(2997, 10007)*a^4 + Mod(9730, 10007)*a^3 + Mod(3134, 10007)*a^2 + Mod(534, 10007)*a + Mod(9795, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(9451, 10007)*a^29 + Mod(9619, 10007)*a^28 + Mod(3792, 10007)*a^27 + Mod(261, 10007)*a^26 + Mod(4710, 10007)*a^25 + Mod(6389, 10007)*a^24 + Mod(1957, 10007)*a^23 + Mod(9853, 10007)*a^22 + Mod(4250, 10007)*a^21 + Mod(6162, 10007)*a^20 + Mod(844, 10007)*a^19 + Mod(2594, 10007)*a^18 + Mod(1170, 10007)*a^17 + Mod(1276, 10007)*a^16 + Mod(2832, 10007)*a^15 + Mod(4730, 10007)*a^14 + Mod(2325, 10007)*a^13 + Mod(6066, 10007)*a^12 + Mod(6012, 10007)*a^11 + Mod(5225, 10007)*a^10 + Mod(6037, 10007)*a^9 + Mod(7722, 10007)*a^8 + Mod(288, 10007)*a^7 + Mod(3602, 10007)*a^6 + Mod(9177, 10007)*a^5 + Mod(9265, 10007)*a^4 + Mod(1496, 10007)*a^3 + Mod(7762, 10007)*a^2 + Mod(2179, 10007)*a + Mod(6374, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

[Mod(Mod(1, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x^2 + Mod(Mod(8558, 10007)*a^29 + Mod(304, 10007)*a^28 + Mod(3789, 10007)*a^27 + Mod(9060, 10007)*a^26 + Mod(522, 10007)*a^25 + Mod(8275, 10007)*a^24 + Mod(1249, 10007)*a^23 + Mod(334, 10007)*a^22 + Mod(5339, 10007)*a^21 + Mod(365, 10007)*a^20 + Mod(2017, 10007)*a^19 + Mod(899, 10007)*a^18 + Mod(7527, 10007)*a^17 + Mod(8229, 10007)*a^16 + Mod(4620, 10007)*a^15 + Mod(382, 10007)*a^14 + Mod(8902, 10007)*a^13 + Mod(3286, 10007)*a^12 + Mod(887, 10007)*a^11 + Mod(5633, 10007)*a^10 + Mod(1546, 10007)*a^9 + Mod(8660, 10007)*a^8 + Mod(4285, 10007)*a^7 + Mod(5935, 10007)*a^6 + Mod(3311, 10007)*a^5 + Mod(3753, 10007)*a^4 + Mod(8935, 10007)*a^3 + Mod(2797, 10007)*a^2 + Mod(2861, 10007)*a + Mod(399, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007))*x + Mod(Mod(741, 10007)*a^29 + Mod(563, 10007)*a^28 + Mod(3457, 10007)*a^27 + Mod(5976, 10007)*a^26 + Mod(2239, 10007)*a^25 + Mod(8476, 10007)*a^24 + Mod(3323, 10007)*a^23 + Mod(453, 10007)*a^22 + Mod(620, 10007)*a^21 + Mod(2533, 10007)*a^20 + Mod(170, 10007)*a^19 + Mod(5172, 10007)*a^18 + Mod(1551, 10007)*a^17 + Mod(7998, 10007)*a^16 + Mod(4312, 10007)*a^15 + Mod(4293, 10007)*a^14 + Mod(1403, 10007)*a^13 + Mod(7783, 10007)*a^12 + Mod(3830, 10007)*a^11 + Mod(757, 10007)*a^10 + Mod(4628, 10007)*a^9 + Mod(6378, 10007)*a^8 + Mod(7522, 10007)*a^7 + Mod(9173, 10007)*a^6 + Mod(5807, 10007)*a^5 + Mod(7125, 10007)*a^4 + Mod(1939, 10007)*a^3 + Mod(6197, 10007)*a^2 + Mod(9330, 10007)*a + Mod(1290, 10007), Mod(1, 10007)*a^30 + Mod(1, 10007)*a + Mod(2, 10007)) 1]

Goodbye!