Revision a29e40bf3072661ef4538b98b6616ef6cced35f2 (click the page title to view the current version)
Changes from a29e40bf3072661ef4538b98b6616ef6cced35f2 to current
# Previous Ateliers:
[2015 (Bordeaux)](Atelier%202015),
[2016 (Grenoble)](Atelier%202016),
[2017 (Lyon)](Atelier%202017)
[2017b (Clermont-Ferrand)](Atelier%202017b)
[2017c (Oujda)](Atelier%202017c)
[2018 (Besançon)](Atelier%202018)
[2018b (Roma)](Atelier%202018b)
[2019 (Bordeaux)](Atelier%202019)
[2019b (Roma)](Atelier%202019b)
[2020 (Grenoble)](Atelier%202020)
[2021b (Oujda)](Atelier%202021b)
[2022 (Besançon)](Atelier%202022)
[2023 (CIRM)](Atelier%202023)
[2024 (Lyon)](Atelier%202024)
[2024b (Roma)](Atelier%202024b)
[2025 (Orsay)](Atelier%202025)
# [Welcome to Atelier PARI/GP 2024b (Lyon)](http://pari.math.u-bordeaux.fr/Events/PARI2024b/)
# [Welcome to Atelier LIBPARI 2025 (Bordeaux)](https://pari.math.u-bordeaux.fr/Events/LIBPARI2025/)
- Lorenzo: Exercises, continued fractions
- Bernadette: Exercices (algebraic number theory), Thue equations
- Federico: Exercises (ANT, Galois theory)
- Pip: Exercises (ANT), class field theory, modular forms
- Jessica: Exercises (ANT, Galois theory), elliptic curves
- Safia: Algebraic number theory, Polya quadratic fields, subgroups of class
groups
- Suman: Algebraic number theory, exercises (ANT, ramification)
- Roslan: Linear algebra, algebraic number theory, class field theory (future:
S-class groups)
- Luca,Nicola,Francesco: Weil height for projective spaces: implemented! (need
tests, reduce factorisation)
## Topics
- Pierrick: higher dimensional isogeny computations in theta coordinates
- Eli: tutorials, non-maximal orders in number fields and quatalg
- James: non-maximal orders (init, conductor) and qfb, algebras over Q
- Pascal: algebraic L-functions, spaces of modular forms of large level
- Nicolas: p-adic fields, curves, integration of various functions, bugfixes
- Baptiste: tutorial, modular forms and number fields, bugfixes, Dirichlet characters
- Henri: help around, periods and quasi-periods of modular forms, testing
- Jean: theta functions, reduction
- Aurel: help around, p-adic fields
- Bill: help around, theta functions, Harvey-Sutherland algorithm for L-function of genus 2 curves
- Rayane: cohomology of Shimura curves, fundamental groupoid of surfaces