Revision 6707efbe94dd5787c4f9bc715c37de35aaaf2bb5 (click the page title to view the current version)
Changes from 6707efbe94dd5787c4f9bc715c37de35aaaf2bb5 to current
# Previous Ateliers:
[2015 (Bordeaux)](Atelier%202015),
[2016 (Grenoble)](Atelier%202016),
[2017 (Lyon)](Atelier%202017)
[2017b (Clermont-Ferrand)](Atelier%202017b)
[2017c (Oujda)](Atelier%202017c)
[2018 (Besançon)](Atelier%202018)
[2018b (Roma)](Atelier%202018b)
[2019 (Bordeaux)](Atelier%202019)
[2019b (Roma)](Atelier%202019b)
[2020 (Grenoble)](Atelier%202020)
[2021b (Oujda)](Atelier%202021b)
[2022 (Besançon)](Atelier%202022)
[2023 (CIRM)](Atelier%202023)
# [Welcome to Atelier PARI/GP 2024 (Lyon)](http://pari.math.u-bordeaux.fr/Events/PARI2024/)
[Doctesting](doc2024)
François: modular abelian varieties, Q-curves associated to newforms
Bernadette: algebraic number theory
Fabrice: fast computation of class groups
Pierrick: doctesting
Arthur: tutorials
Wessel: CVP, lattice reduction
Jean: Picard group of curves
Nicolas: algebraic curves libpari
Andreas: partial ECPP certificates, class polynomials by CRT
Olivier: doctesting, lattices
Sophie: tutorials algebraic number theory, finite fields
Rob: curves of low genus or hyperell, p-adic extensions
Pascal: mf package (bug)
Henri: Riemann-Siegel formula, continued fractions, Monsky's mock Heegner points
Abbas: tutorials
Benjamin: central simple algebras
Alice: lattices and norm relations
Leo: p-adic field extensions
Francesco: facto and resultants of polys
Thibaut: basic GP
Mickaël: central simple algebras, bugs
Marine: doctesting
Xavier: debugging
Jean-Robert: abelian fields, doctesting
Ayoub: capitulation problems
Rafik: tutorials
[2024 (Lyon)](Atelier%202024)
[2024b (Roma)](Atelier%202024b)
[2025 (Orsay)](Atelier%202025)
Bill: helping around
# [Welcome to Atelier LIBPARI 2025 (Bordeaux)](https://pari.math.u-bordeaux.fr/Events/LIBPARI2025/)
Aurel: helping around, lattice algorithms
## Topics
- Pierrick: higher dimensional isogeny computations in theta coordinates
- Eli: tutorials, non-maximal orders in number fields and quatalg
- James: non-maximal orders (init, conductor) and qfb, algebras over Q
- Pascal: algebraic L-functions, spaces of modular forms of large level
- Nicolas: p-adic fields, curves, integration of various functions, bugfixes
- Baptiste: tutorial, modular forms and number fields, bugfixes, Dirichlet characters
- Henri: help around, periods and quasi-periods of modular forms, testing
- Jean: theta functions, reduction
- Aurel: help around, p-adic fields
- Bill: help around, theta functions, Harvey-Sutherland algorithm for L-function of genus 2 curves
- Rayane: cohomology of Shimura curves, fundamental groupoid of surfaces