Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - base3.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.0 lcov report (development 29804-254f602fce) Lines: 2061 2170 95.0 %
Date: 2024-12-18 09:08:59 Functions: 227 238 95.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2000  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : /*******************************************************************/
      16             : /*                                                                 */
      17             : /*                       BASIC NF OPERATIONS                       */
      18             : /*                                                                 */
      19             : /*******************************************************************/
      20             : #include "pari.h"
      21             : #include "paripriv.h"
      22             : 
      23             : #define DEBUGLEVEL DEBUGLEVEL_nf
      24             : 
      25             : /*******************************************************************/
      26             : /*                                                                 */
      27             : /*                OPERATIONS OVER NUMBER FIELD ELEMENTS.           */
      28             : /*     represented as column vectors over the integral basis       */
      29             : /*                                                                 */
      30             : /*******************************************************************/
      31             : static GEN
      32    40230940 : get_tab(GEN nf, long *N)
      33             : {
      34    40230940 :   GEN tab = (typ(nf) == t_MAT)? nf: gel(nf,9);
      35    40230940 :   *N = nbrows(tab); return tab;
      36             : }
      37             : 
      38             : /* x != 0, y t_INT. Return x * y (not memory clean if x = 1) */
      39             : static GEN
      40  1087466928 : _mulii(GEN x, GEN y) {
      41  1757147308 :   return is_pm1(x)? (signe(x) < 0)? negi(y): y
      42  1757009520 :                   : mulii(x, y);
      43             : }
      44             : 
      45             : GEN
      46       22203 : tablemul_ei_ej(GEN M, long i, long j)
      47             : {
      48             :   long N;
      49       22203 :   GEN tab = get_tab(M, &N);
      50       22203 :   tab += (i-1)*N; return gel(tab,j);
      51             : }
      52             : 
      53             : /* Outputs x.ei, where ei is the i-th elt of the algebra basis.
      54             :  * x an RgV of correct length and arbitrary content (polynomials, scalars...).
      55             :  * M is the multiplication table ei ej = sum_k M_k^(i,j) ek */
      56             : GEN
      57       11557 : tablemul_ei(GEN M, GEN x, long i)
      58             : {
      59             :   long j, k, N;
      60             :   GEN v, tab;
      61             : 
      62       11557 :   if (i==1) return gcopy(x);
      63       11557 :   tab = get_tab(M, &N);
      64       11557 :   if (typ(x) != t_COL) { v = zerocol(N); gel(v,i) = gcopy(x); return v; }
      65       11557 :   tab += (i-1)*N; v = cgetg(N+1,t_COL);
      66             :   /* wi . x = [ sum_j tab[k,j] x[j] ]_k */
      67       78491 :   for (k=1; k<=N; k++)
      68             :   {
      69       66934 :     pari_sp av = avma;
      70       66934 :     GEN s = gen_0;
      71      473214 :     for (j=1; j<=N; j++)
      72             :     {
      73      406280 :       GEN c = gcoeff(tab,k,j);
      74      406280 :       if (!gequal0(c)) s = gadd(s, gmul(c, gel(x,j)));
      75             :     }
      76       66934 :     gel(v,k) = gerepileupto(av,s);
      77             :   }
      78       11557 :   return v;
      79             : }
      80             : /* as tablemul_ei, assume x a ZV of correct length */
      81             : GEN
      82    23968873 : zk_ei_mul(GEN nf, GEN x, long i)
      83             : {
      84             :   long j, k, N;
      85             :   GEN v, tab;
      86             : 
      87    23968873 :   if (i==1) return ZC_copy(x);
      88    23968873 :   tab = get_tab(nf, &N); tab += (i-1)*N;
      89    23968750 :   v = cgetg(N+1,t_COL);
      90   169914688 :   for (k=1; k<=N; k++)
      91             :   {
      92   145949732 :     pari_sp av = avma;
      93   145949732 :     GEN s = gen_0;
      94  2143480494 :     for (j=1; j<=N; j++)
      95             :     {
      96  1997693117 :       GEN c = gcoeff(tab,k,j);
      97  1997693117 :       if (signe(c)) s = addii(s, _mulii(c, gel(x,j)));
      98             :     }
      99   145787377 :     gel(v,k) = gerepileuptoint(av, s);
     100             :   }
     101    23964956 :   return v;
     102             : }
     103             : 
     104             : /* table of multiplication by wi in R[w1,..., wN] */
     105             : GEN
     106       39294 : ei_multable(GEN TAB, long i)
     107             : {
     108             :   long k,N;
     109       39294 :   GEN m, tab = get_tab(TAB, &N);
     110       39294 :   tab += (i-1)*N;
     111       39294 :   m = cgetg(N+1,t_MAT);
     112      154064 :   for (k=1; k<=N; k++) gel(m,k) = gel(tab,k);
     113       39294 :   return m;
     114             : }
     115             : 
     116             : GEN
     117    10844042 : zk_multable(GEN nf, GEN x)
     118             : {
     119    10844042 :   long i, l = lg(x);
     120    10844042 :   GEN mul = cgetg(l,t_MAT);
     121    10843974 :   gel(mul,1) = x; /* assume w_1 = 1 */
     122    34447949 :   for (i=2; i<l; i++) gel(mul,i) = zk_ei_mul(nf,x,i);
     123    10840435 :   return mul;
     124             : }
     125             : GEN
     126        2751 : multable(GEN M, GEN x)
     127             : {
     128             :   long i, N;
     129             :   GEN mul;
     130        2751 :   if (typ(x) == t_MAT) return x;
     131           0 :   M = get_tab(M, &N);
     132           0 :   if (typ(x) != t_COL) return scalarmat(x, N);
     133           0 :   mul = cgetg(N+1,t_MAT);
     134           0 :   gel(mul,1) = x; /* assume w_1 = 1 */
     135           0 :   for (i=2; i<=N; i++) gel(mul,i) = tablemul_ei(M,x,i);
     136           0 :   return mul;
     137             : }
     138             : 
     139             : /* x integral in nf; table of multiplication by x in ZK = Z[w1,..., wN].
     140             :  * Return a t_INT if x is scalar, and a ZM otherwise */
     141             : GEN
     142     5001587 : zk_scalar_or_multable(GEN nf, GEN x)
     143             : {
     144     5001587 :   long tx = typ(x);
     145     5001587 :   if (tx == t_MAT || tx == t_INT) return x;
     146     4839098 :   x = nf_to_scalar_or_basis(nf, x);
     147     4839067 :   return (typ(x) == t_COL)? zk_multable(nf, x): x;
     148             : }
     149             : 
     150             : GEN
     151       21304 : nftrace(GEN nf, GEN x)
     152             : {
     153       21304 :   pari_sp av = avma;
     154       21304 :   nf = checknf(nf);
     155       21304 :   x = nf_to_scalar_or_basis(nf, x);
     156       21284 :   x = (typ(x) == t_COL)? RgV_dotproduct(x, gel(nf_get_Tr(nf),1))
     157       21305 :                        : gmulgu(x, nf_get_degree(nf));
     158       21308 :   return gerepileupto(av, x);
     159             : }
     160             : GEN
     161        1043 : rnfelttrace(GEN rnf, GEN x)
     162             : {
     163        1043 :   pari_sp av = avma;
     164        1043 :   checkrnf(rnf);
     165             :   /* avoid rnfabstorel special t_POL case misinterpretation */
     166        1036 :   if (typ(x) == t_POL && varn(x) == rnf_get_varn(rnf))
     167          63 :     x = gmodulo(x, rnf_get_pol(rnf));
     168        1036 :   x = rnfeltabstorel(rnf, x);
     169         721 :   x = (typ(x) == t_POLMOD)? rnfeltdown(rnf, gtrace(x))
     170         826 :                           : gmulgu(x, rnf_get_degree(rnf));
     171         826 :   return gerepileupto(av, x);
     172             : }
     173             : 
     174             : static GEN
     175          35 : famatQ_to_famatZ(GEN fa)
     176             : {
     177          35 :   GEN E, F, Q, P = gel(fa,1);
     178          35 :   long i, j, l = lg(P);
     179          35 :   if (l == 1 || RgV_is_ZV(P)) return fa;
     180           7 :   Q = cgetg(2*l, t_COL);
     181           7 :   F = cgetg(2*l, t_COL); E = gel(fa, 2);
     182          35 :   for (i = j = 1; i < l; i++)
     183             :   {
     184          28 :     GEN p = gel(P,i);
     185          28 :     if (typ(p) == t_INT)
     186          14 :     { gel(Q, j) = p; gel(F, j) = gel(E, i); j++; }
     187             :     else
     188             :     {
     189          14 :       gel(Q, j) = gel(p,1); gel(F, j) = gel(E, i); j++;
     190          14 :       gel(Q, j) = gel(p,2); gel(F, j) = negi(gel(E, i)); j++;
     191             :     }
     192             :   }
     193           7 :   setlg(Q, j); setlg(F, j); return mkmat2(Q, F);
     194             : }
     195             : static GEN
     196          35 : famat_cba(GEN fa)
     197             : {
     198          35 :   GEN Q, F, P = gel(fa, 1), E = gel(fa, 2);
     199          35 :   long i, j, lQ, l = lg(P);
     200          35 :   if (l == 1) return fa;
     201          28 :   Q = ZV_cba(P); lQ = lg(Q); settyp(Q, t_COL);
     202          28 :   F = cgetg(lQ, t_COL);
     203          77 :   for (j = 1; j < lQ; j++)
     204             :   {
     205          49 :     GEN v = gen_0, q = gel(Q,j);
     206          49 :     if (!equali1(q))
     207         203 :       for (i = 1; i < l; i++)
     208             :       {
     209         161 :         long e = Z_pval(gel(P,i), q);
     210         161 :         if (e) v = addii(v, muliu(gel(E,i), e));
     211             :       }
     212          49 :     gel(F, j) = v;
     213             :   }
     214          28 :   return mkmat2(Q, F);
     215             : }
     216             : static long
     217          35 : famat_sign(GEN fa)
     218             : {
     219          35 :   GEN P = gel(fa,1), E = gel(fa,2);
     220          35 :   long i, l = lg(P), s = 1;
     221         126 :   for (i = 1; i < l; i++)
     222          91 :     if (signe(gel(P,i)) < 0 && mpodd(gel(E,i))) s = -s;
     223          35 :   return s;
     224             : }
     225             : static GEN
     226          35 : famat_abs(GEN fa)
     227             : {
     228          35 :   GEN Q, P = gel(fa,1);
     229             :   long i, l;
     230          35 :   Q = cgetg_copy(P, &l);
     231         126 :   for (i = 1; i < l; i++) gel(Q,i) = absi_shallow(gel(P,i));
     232          35 :   return mkmat2(Q, gel(fa,2));
     233             : }
     234             : 
     235             : /* assume nf is a genuine nf, fa a famat */
     236             : static GEN
     237          35 : famat_norm(GEN nf, GEN fa)
     238             : {
     239          35 :   pari_sp av = avma;
     240          35 :   GEN G, g = gel(fa,1);
     241             :   long i, l, s;
     242             : 
     243          35 :   G = cgetg_copy(g, &l);
     244         112 :   for (i = 1; i < l; i++) gel(G,i) = nfnorm(nf, gel(g,i));
     245          35 :   fa = mkmat2(G, gel(fa,2));
     246          35 :   fa = famatQ_to_famatZ(fa);
     247          35 :   s = famat_sign(fa);
     248          35 :   fa = famat_reduce(famat_abs(fa));
     249          35 :   fa = famat_cba(fa);
     250          35 :   g = factorback(fa);
     251          35 :   return gerepileupto(av, s < 0? gneg(g): g);
     252             : }
     253             : GEN
     254      223201 : nfnorm(GEN nf, GEN x)
     255             : {
     256      223201 :   pari_sp av = avma;
     257             :   GEN c, den;
     258             :   long n;
     259      223201 :   nf = checknf(nf);
     260      223201 :   n = nf_get_degree(nf);
     261      223201 :   if (typ(x) == t_MAT) return famat_norm(nf, x);
     262      223166 :   x = nf_to_scalar_or_basis(nf, x);
     263      223166 :   if (typ(x)!=t_COL)
     264      126910 :     return gerepileupto(av, gpowgs(x, n));
     265       96256 :   x = nf_to_scalar_or_alg(nf, Q_primitive_part(x, &c));
     266       96255 :   x = Q_remove_denom(x, &den);
     267       96255 :   x = ZX_resultant_all(nf_get_pol(nf), x, den, 0);
     268       96255 :   return gerepileupto(av, c ? gmul(x, gpowgs(c, n)): x);
     269             : }
     270             : 
     271             : static GEN
     272         119 : to_RgX(GEN P, long vx)
     273             : {
     274         119 :   return varn(P) == vx ? P: scalarpol_shallow(P, vx);
     275             : }
     276             : 
     277             : GEN
     278         462 : rnfeltnorm(GEN rnf, GEN x)
     279             : {
     280         462 :   pari_sp av = avma;
     281             :   GEN nf, pol;
     282             :   long v;
     283         462 :   checkrnf(rnf);
     284         455 :   v = rnf_get_varn(rnf);
     285             :   /* avoid rnfabstorel special t_POL case misinterpretation */
     286         455 :   if (typ(x) == t_POL && varn(x) == v) x = gmodulo(x, rnf_get_pol(rnf));
     287         455 :   x = liftpol_shallow(rnfeltabstorel(rnf, x));
     288         245 :   nf = rnf_get_nf(rnf); pol = rnf_get_pol(rnf);
     289         490 :   x = (typ(x) == t_POL)
     290         119 :     ? rnfeltdown(rnf, nfX_resultant(nf,pol,to_RgX(x,v)))
     291         245 :     : gpowgs(x, rnf_get_degree(rnf));
     292         245 :   return gerepileupto(av, x);
     293             : }
     294             : 
     295             : /* x + y in nf */
     296             : GEN
     297    23476606 : nfadd(GEN nf, GEN x, GEN y)
     298             : {
     299    23476606 :   pari_sp av = avma;
     300             :   GEN z;
     301             : 
     302    23476606 :   nf = checknf(nf);
     303    23476606 :   x = nf_to_scalar_or_basis(nf, x);
     304    23476606 :   y = nf_to_scalar_or_basis(nf, y);
     305    23476606 :   if (typ(x) != t_COL)
     306    17706842 :   { z = (typ(y) == t_COL)? RgC_Rg_add(y, x): gadd(x,y); }
     307             :   else
     308     5769764 :   { z = (typ(y) == t_COL)? RgC_add(x, y): RgC_Rg_add(x, y); }
     309    23476606 :   return gerepileupto(av, z);
     310             : }
     311             : /* x - y in nf */
     312             : GEN
     313     1815196 : nfsub(GEN nf, GEN x, GEN y)
     314             : {
     315     1815196 :   pari_sp av = avma;
     316             :   GEN z;
     317             : 
     318     1815196 :   nf = checknf(nf);
     319     1815196 :   x = nf_to_scalar_or_basis(nf, x);
     320     1815196 :   y = nf_to_scalar_or_basis(nf, y);
     321     1815196 :   if (typ(x) != t_COL)
     322     1282372 :   { z = (typ(y) == t_COL)? Rg_RgC_sub(x,y): gsub(x,y); }
     323             :   else
     324      532824 :   { z = (typ(y) == t_COL)? RgC_sub(x,y): RgC_Rg_sub(x,y); }
     325     1815196 :   return gerepileupto(av, z);
     326             : }
     327             : 
     328             : /* product of ZC x,y in (true) nf; ( sum_i x_i sum_j y_j m^{i,j}_k )_k */
     329             : static GEN
     330     9062408 : nfmuli_ZC(GEN nf, GEN x, GEN y)
     331             : {
     332             :   long i, j, k, N;
     333     9062408 :   GEN TAB = get_tab(nf, &N), v = cgetg(N+1,t_COL);
     334             : 
     335    44073364 :   for (k = 1; k <= N; k++)
     336             :   {
     337    35011057 :     pari_sp av = avma;
     338    35011057 :     GEN s, TABi = TAB;
     339    35011057 :     if (k == 1)
     340     9062402 :       s = mulii(gel(x,1),gel(y,1));
     341             :     else
     342    25948551 :       s = addii(mulii(gel(x,1),gel(y,k)),
     343    25948655 :                 mulii(gel(x,k),gel(y,1)));
     344   227079994 :     for (i=2; i<=N; i++)
     345             :     {
     346   192072932 :       GEN t, xi = gel(x,i);
     347   192072932 :       TABi += N;
     348   192072932 :       if (!signe(xi)) continue;
     349             : 
     350    96759017 :       t = NULL;
     351  1084257147 :       for (j=2; j<=N; j++)
     352             :       {
     353   987500304 :         GEN p1, c = gcoeff(TABi, k, j); /* m^{i,j}_k */
     354   987500304 :         if (!signe(c)) continue;
     355   291620931 :         p1 = _mulii(c, gel(y,j));
     356   291625646 :         t = t? addii(t, p1): p1;
     357             :       }
     358    96756843 :       if (t) s = addii(s, mulii(xi, t));
     359             :     }
     360    35007062 :     gel(v,k) = gerepileuptoint(av,s);
     361             :   }
     362     9062307 :   return v;
     363             : }
     364             : static int
     365    74739384 : is_famat(GEN x) { return typ(x) == t_MAT && lg(x) == 3; }
     366             : /* product of x and y in nf */
     367             : GEN
     368    36372980 : nfmul(GEN nf, GEN x, GEN y)
     369             : {
     370             :   GEN z;
     371    36372980 :   pari_sp av = avma;
     372             : 
     373    36372980 :   if (x == y) return nfsqr(nf,x);
     374             : 
     375    32276927 :   nf = checknf(nf);
     376    32276929 :   if (is_famat(x) || is_famat(y)) return famat_mul(x, y);
     377    32276620 :   x = nf_to_scalar_or_basis(nf, x);
     378    32276616 :   y = nf_to_scalar_or_basis(nf, y);
     379    32276618 :   if (typ(x) != t_COL)
     380             :   {
     381    21843939 :     if (isintzero(x)) return gen_0;
     382    15772811 :     z = (typ(y) == t_COL)? RgC_Rg_mul(y, x): gmul(x,y); }
     383             :   else
     384             :   {
     385    10432679 :     if (typ(y) != t_COL)
     386             :     {
     387     4547656 :       if (isintzero(y)) return gen_0;
     388     1613538 :       z = RgC_Rg_mul(x, y);
     389             :     }
     390             :     else
     391             :     {
     392             :       GEN dx, dy;
     393     5885023 :       x = Q_remove_denom(x, &dx);
     394     5885023 :       y = Q_remove_denom(y, &dy);
     395     5885024 :       z = nfmuli_ZC(nf,x,y);
     396     5885025 :       dx = mul_denom(dx,dy);
     397     5885025 :       if (dx) z = ZC_Z_div(z, dx);
     398             :     }
     399             :   }
     400    23271360 :   return gerepileupto(av, z);
     401             : }
     402             : /* square of ZC x in nf */
     403             : static GEN
     404     7129552 : nfsqri_ZC(GEN nf, GEN x)
     405             : {
     406             :   long i, j, k, N;
     407     7129552 :   GEN TAB = get_tab(nf, &N), v = cgetg(N+1,t_COL);
     408             : 
     409    39015338 :   for (k = 1; k <= N; k++)
     410             :   {
     411    31885897 :     pari_sp av = avma;
     412    31885897 :     GEN s, TABi = TAB;
     413    31885897 :     if (k == 1)
     414     7129719 :       s = sqri(gel(x,1));
     415             :     else
     416    24756178 :       s = shifti(mulii(gel(x,1),gel(x,k)), 1);
     417   253846469 :     for (i=2; i<=N; i++)
     418             :     {
     419   221980275 :       GEN p1, c, t, xi = gel(x,i);
     420   221980275 :       TABi += N;
     421   221980275 :       if (!signe(xi)) continue;
     422             : 
     423    79972131 :       c = gcoeff(TABi, k, i);
     424    79972131 :       t = signe(c)? _mulii(c,xi): NULL;
     425   676105728 :       for (j=i+1; j<=N; j++)
     426             :       {
     427   596133076 :         c = gcoeff(TABi, k, j);
     428   596133076 :         if (!signe(c)) continue;
     429   231965378 :         p1 = _mulii(c, shifti(gel(x,j),1));
     430   231971033 :         t = t? addii(t, p1): p1;
     431             :       }
     432    79972652 :       if (t) s = addii(s, mulii(xi, t));
     433             :     }
     434    31866194 :     gel(v,k) = gerepileuptoint(av,s);
     435             :   }
     436     7129441 :   return v;
     437             : }
     438             : /* square of x in nf */
     439             : GEN
     440     8914784 : nfsqr(GEN nf, GEN x)
     441             : {
     442     8914784 :   pari_sp av = avma;
     443             :   GEN z;
     444             : 
     445     8914784 :   nf = checknf(nf);
     446     8914788 :   if (is_famat(x)) return famat_sqr(x);
     447     8914791 :   x = nf_to_scalar_or_basis(nf, x);
     448     8914791 :   if (typ(x) != t_COL) z = gsqr(x);
     449             :   else
     450             :   {
     451             :     GEN dx;
     452     2632088 :     x = Q_remove_denom(x, &dx);
     453     2632093 :     z = nfsqri_ZC(nf,x);
     454     2632086 :     if (dx) z = RgC_Rg_div(z, sqri(dx));
     455             :   }
     456     8914790 :   return gerepileupto(av, z);
     457             : }
     458             : 
     459             : /* x a ZC, v a t_COL of ZC/Z */
     460             : GEN
     461      205721 : zkC_multable_mul(GEN v, GEN x)
     462             : {
     463      205721 :   long i, l = lg(v);
     464      205721 :   GEN y = cgetg(l, t_COL);
     465      800269 :   for (i = 1; i < l; i++)
     466             :   {
     467      594548 :     GEN c = gel(v,i);
     468      594548 :     if (typ(c)!=t_COL) {
     469           0 :       if (!isintzero(c)) c = ZC_Z_mul(gel(x,1), c);
     470             :     } else {
     471      594548 :       c = ZM_ZC_mul(x,c);
     472      594548 :       if (ZV_isscalar(c)) c = gel(c,1);
     473             :     }
     474      594548 :     gel(y,i) = c;
     475             :   }
     476      205721 :   return y;
     477             : }
     478             : 
     479             : GEN
     480       57227 : nfC_multable_mul(GEN v, GEN x)
     481             : {
     482       57227 :   long i, l = lg(v);
     483       57227 :   GEN y = cgetg(l, t_COL);
     484      385363 :   for (i = 1; i < l; i++)
     485             :   {
     486      328136 :     GEN c = gel(v,i);
     487      328136 :     if (typ(c)!=t_COL) {
     488      273526 :       if (!isintzero(c)) c = RgC_Rg_mul(gel(x,1), c);
     489             :     } else {
     490       54610 :       c = RgM_RgC_mul(x,c);
     491       54610 :       if (QV_isscalar(c)) c = gel(c,1);
     492             :     }
     493      328136 :     gel(y,i) = c;
     494             :   }
     495       57227 :   return y;
     496             : }
     497             : 
     498             : GEN
     499      200022 : nfC_nf_mul(GEN nf, GEN v, GEN x)
     500             : {
     501             :   long tx;
     502             :   GEN y;
     503             : 
     504      200022 :   x = nf_to_scalar_or_basis(nf, x);
     505      200022 :   tx = typ(x);
     506      200022 :   if (tx != t_COL)
     507             :   {
     508             :     long l, i;
     509      151425 :     if (tx == t_INT)
     510             :     {
     511      142150 :       long s = signe(x);
     512      142150 :       if (!s) return zerocol(lg(v)-1);
     513      134676 :       if (is_pm1(x)) return s > 0? leafcopy(v): RgC_neg(v);
     514             :     }
     515       49098 :     l = lg(v); y = cgetg(l, t_COL);
     516      350483 :     for (i=1; i < l; i++)
     517             :     {
     518      301385 :       GEN c = gel(v,i);
     519      301385 :       if (typ(c) != t_COL) c = gmul(c, x); else c = RgC_Rg_mul(c, x);
     520      301385 :       gel(y,i) = c;
     521             :     }
     522       49098 :     return y;
     523             :   }
     524             :   else
     525             :   {
     526             :     GEN dx;
     527       48597 :     x = zk_multable(nf, Q_remove_denom(x,&dx));
     528       48597 :     y = nfC_multable_mul(v, x);
     529       48597 :     return dx? RgC_Rg_div(y, dx): y;
     530             :   }
     531             : }
     532             : static GEN
     533       11213 : mulbytab(GEN M, GEN c)
     534       11213 : { return typ(c) == t_COL? RgM_RgC_mul(M,c): RgC_Rg_mul(gel(M,1), c); }
     535             : GEN
     536        2751 : tablemulvec(GEN M, GEN x, GEN v)
     537             : {
     538             :   long l, i;
     539             :   GEN y;
     540             : 
     541        2751 :   if (typ(x) == t_COL && RgV_isscalar(x))
     542             :   {
     543           0 :     x = gel(x,1);
     544           0 :     return typ(v) == t_POL? RgX_Rg_mul(v,x): RgV_Rg_mul(v,x);
     545             :   }
     546        2751 :   x = multable(M, x); /* multiplication table by x */
     547        2751 :   y = cgetg_copy(v, &l);
     548        2751 :   if (typ(v) == t_POL)
     549             :   {
     550        2751 :     y[1] = v[1];
     551       13964 :     for (i=2; i < l; i++) gel(y,i) = mulbytab(x, gel(v,i));
     552        2751 :     y = normalizepol(y);
     553             :   }
     554             :   else
     555             :   {
     556           0 :     for (i=1; i < l; i++) gel(y,i) = mulbytab(x, gel(v,i));
     557             :   }
     558        2751 :   return y;
     559             : }
     560             : 
     561             : GEN
     562     1261707 : zkmultable_capZ(GEN mx) { return Q_denom(zkmultable_inv(mx)); }
     563             : GEN
     564     1580970 : zkmultable_inv(GEN mx) { return ZM_gauss(mx, col_ei(lg(mx)-1,1)); }
     565             : /* nf a true nf, x a ZC */
     566             : GEN
     567      319266 : zk_inv(GEN nf, GEN x) { return zkmultable_inv(zk_multable(nf,x)); }
     568             : 
     569             : /* inverse of x in nf */
     570             : GEN
     571      240289 : nfinv(GEN nf, GEN x)
     572             : {
     573      240289 :   pari_sp av = avma;
     574             :   GEN z;
     575             : 
     576      240289 :   nf = checknf(nf);
     577      240289 :   if (is_famat(x)) return famat_inv(x);
     578      240289 :   x = nf_to_scalar_or_basis(nf, x);
     579      240289 :   if (typ(x) == t_COL)
     580             :   {
     581             :     GEN d;
     582      190865 :     x = Q_remove_denom(x, &d);
     583      190865 :     z = zk_inv(nf, x);
     584      190865 :     if (d) z = RgC_Rg_mul(z, d);
     585             :   }
     586             :   else
     587       49424 :     z = ginv(x);
     588      240289 :   return gerepileupto(av, z);
     589             : }
     590             : 
     591             : /* quotient of x and y in nf */
     592             : GEN
     593       36326 : nfdiv(GEN nf, GEN x, GEN y)
     594             : {
     595       36326 :   pari_sp av = avma;
     596             :   GEN z;
     597             : 
     598       36326 :   nf = checknf(nf);
     599       36326 :   if (is_famat(x) || is_famat(y)) return famat_div(x,y);
     600       36235 :   y = nf_to_scalar_or_basis(nf, y);
     601       36235 :   if (typ(y) != t_COL)
     602             :   {
     603       22099 :     x = nf_to_scalar_or_basis(nf, x);
     604       22099 :     z = (typ(x) == t_COL)? RgC_Rg_div(x, y): gdiv(x,y);
     605             :   }
     606             :   else
     607             :   {
     608             :     GEN d;
     609       14136 :     y = Q_remove_denom(y, &d);
     610       14136 :     z = nfmul(nf, x, zk_inv(nf,y));
     611       14136 :     if (d) z = typ(z) == t_COL? RgC_Rg_mul(z, d): gmul(z, d);
     612             :   }
     613       36235 :   return gerepileupto(av, z);
     614             : }
     615             : 
     616             : /* product of INTEGERS (t_INT or ZC) x and y in (true) nf */
     617             : GEN
     618     4549697 : nfmuli(GEN nf, GEN x, GEN y)
     619             : {
     620     4549697 :   if (typ(x) == t_INT) return (typ(y) == t_COL)? ZC_Z_mul(y, x): mulii(x,y);
     621     3410388 :   if (typ(y) == t_INT) return ZC_Z_mul(x, y);
     622     3177345 :   return nfmuli_ZC(nf, x, y);
     623             : }
     624             : GEN
     625     4497507 : nfsqri(GEN nf, GEN x)
     626     4497507 : { return (typ(x) == t_INT)? sqri(x): nfsqri_ZC(nf, x); }
     627             : 
     628             : /* both x and y are RgV */
     629             : GEN
     630           0 : tablemul(GEN TAB, GEN x, GEN y)
     631             : {
     632             :   long i, j, k, N;
     633             :   GEN s, v;
     634           0 :   if (typ(x) != t_COL) return gmul(x, y);
     635           0 :   if (typ(y) != t_COL) return gmul(y, x);
     636           0 :   N = lg(x)-1;
     637           0 :   v = cgetg(N+1,t_COL);
     638           0 :   for (k=1; k<=N; k++)
     639             :   {
     640           0 :     pari_sp av = avma;
     641           0 :     GEN TABi = TAB;
     642           0 :     if (k == 1)
     643           0 :       s = gmul(gel(x,1),gel(y,1));
     644             :     else
     645           0 :       s = gadd(gmul(gel(x,1),gel(y,k)),
     646           0 :                gmul(gel(x,k),gel(y,1)));
     647           0 :     for (i=2; i<=N; i++)
     648             :     {
     649           0 :       GEN t, xi = gel(x,i);
     650           0 :       TABi += N;
     651           0 :       if (gequal0(xi)) continue;
     652             : 
     653           0 :       t = NULL;
     654           0 :       for (j=2; j<=N; j++)
     655             :       {
     656           0 :         GEN p1, c = gcoeff(TABi, k, j); /* m^{i,j}_k */
     657           0 :         if (gequal0(c)) continue;
     658           0 :         p1 = gmul(c, gel(y,j));
     659           0 :         t = t? gadd(t, p1): p1;
     660             :       }
     661           0 :       if (t) s = gadd(s, gmul(xi, t));
     662             :     }
     663           0 :     gel(v,k) = gerepileupto(av,s);
     664             :   }
     665           0 :   return v;
     666             : }
     667             : GEN
     668       49090 : tablesqr(GEN TAB, GEN x)
     669             : {
     670             :   long i, j, k, N;
     671             :   GEN s, v;
     672             : 
     673       49090 :   if (typ(x) != t_COL) return gsqr(x);
     674       49090 :   N = lg(x)-1;
     675       49090 :   v = cgetg(N+1,t_COL);
     676             : 
     677      349430 :   for (k=1; k<=N; k++)
     678             :   {
     679      300340 :     pari_sp av = avma;
     680      300340 :     GEN TABi = TAB;
     681      300340 :     if (k == 1)
     682       49090 :       s = gsqr(gel(x,1));
     683             :     else
     684      251250 :       s = gmul2n(gmul(gel(x,1),gel(x,k)), 1);
     685     1909862 :     for (i=2; i<=N; i++)
     686             :     {
     687     1609522 :       GEN p1, c, t, xi = gel(x,i);
     688     1609522 :       TABi += N;
     689     1609522 :       if (gequal0(xi)) continue;
     690             : 
     691      419846 :       c = gcoeff(TABi, k, i);
     692      419846 :       t = !gequal0(c)? gmul(c,xi): NULL;
     693     1676969 :       for (j=i+1; j<=N; j++)
     694             :       {
     695     1257123 :         c = gcoeff(TABi, k, j);
     696     1257123 :         if (gequal0(c)) continue;
     697      646443 :         p1 = gmul(gmul2n(c,1), gel(x,j));
     698      646443 :         t = t? gadd(t, p1): p1;
     699             :       }
     700      419846 :       if (t) s = gadd(s, gmul(xi, t));
     701             :     }
     702      300340 :     gel(v,k) = gerepileupto(av,s);
     703             :   }
     704       49090 :   return v;
     705             : }
     706             : 
     707             : static GEN
     708      356594 : _mul(void *data, GEN x, GEN y) { return nfmuli((GEN)data,x,y); }
     709             : static GEN
     710      987473 : _sqr(void *data, GEN x) { return nfsqri((GEN)data,x); }
     711             : 
     712             : /* Compute z^n in nf, left-shift binary powering */
     713             : GEN
     714      943122 : nfpow(GEN nf, GEN z, GEN n)
     715             : {
     716      943122 :   pari_sp av = avma;
     717             :   long s;
     718             :   GEN x, cx;
     719             : 
     720      943122 :   if (typ(n)!=t_INT) pari_err_TYPE("nfpow",n);
     721      943122 :   nf = checknf(nf);
     722      943121 :   s = signe(n); if (!s) return gen_1;
     723      943121 :   if (is_famat(z)) return famat_pow(z, n);
     724      882480 :   x = nf_to_scalar_or_basis(nf, z);
     725      882480 :   if (typ(x) != t_COL) return powgi(x,n);
     726      762660 :   if (s < 0)
     727             :   { /* simplified nfinv */
     728             :     GEN d;
     729       45770 :     x = Q_remove_denom(x, &d);
     730       45770 :     x = zk_inv(nf, x);
     731       45769 :     x = primitive_part(x, &cx);
     732       45770 :     cx = mul_content(cx, d);
     733       45770 :     n = negi(n);
     734             :   }
     735             :   else
     736      716890 :     x = primitive_part(x, &cx);
     737      762635 :   x = gen_pow_i(x, n, (void*)nf, _sqr, _mul);
     738      762647 :   if (cx)
     739       46849 :     x = gerepileupto(av, gmul(x, powgi(cx, n)));
     740             :   else
     741      715798 :     x = gerepilecopy(av, x);
     742      762669 :   return x;
     743             : }
     744             : /* Compute z^n in nf, left-shift binary powering */
     745             : GEN
     746      354713 : nfpow_u(GEN nf, GEN z, ulong n)
     747             : {
     748      354713 :   pari_sp av = avma;
     749             :   GEN x, cx;
     750             : 
     751      354713 :   if (!n) return gen_1;
     752      354713 :   x = nf_to_scalar_or_basis(nf, z);
     753      354713 :   if (typ(x) != t_COL) return gpowgs(x,n);
     754      318451 :   x = primitive_part(x, &cx);
     755      318450 :   x = gen_powu_i(x, n, (void*)nf, _sqr, _mul);
     756      318451 :   if (cx)
     757             :   {
     758      114518 :     x = gmul(x, powgi(cx, utoipos(n)));
     759      114518 :     return gerepileupto(av,x);
     760             :   }
     761      203933 :   return gerepilecopy(av, x);
     762             : }
     763             : 
     764             : long
     765        1099 : nfissquare(GEN nf, GEN z, GEN *px)
     766             : {
     767        1099 :   pari_sp av = avma;
     768        1099 :   long v = fetch_var_higher();
     769             :   GEN R;
     770        1099 :   nf = checknf(nf);
     771        1099 :   if (nf_get_degree(nf) == 1)
     772             :   {
     773         189 :     z = algtobasis(nf, z);
     774         189 :     if (!issquareall(gel(z,1), px)) return gc_long(av, 0);
     775          21 :     if (px) *px = gerepileupto(av, *px); else set_avma(av);
     776          21 :     return 1;
     777             :   }
     778         910 :   z = nf_to_scalar_or_alg(nf, z);
     779         910 :   R = nfroots(nf, deg2pol_shallow(gen_m1, gen_0, z, v));
     780         910 :   delete_var(); if (lg(R) == 1) return gc_long(av, 0);
     781         560 :   if (px) *px = gerepilecopy(av, nf_to_scalar_or_basis(nf, gel(R,1)));
     782          14 :   else set_avma(av);
     783         560 :   return 1;
     784             : }
     785             : 
     786             : long
     787        7710 : nfispower(GEN nf, GEN z, long n, GEN *px)
     788             : {
     789        7710 :   pari_sp av = avma;
     790        7710 :   long v = fetch_var_higher();
     791             :   GEN R;
     792        7710 :   nf = checknf(nf);
     793        7710 :   if (nf_get_degree(nf) == 1)
     794             :   {
     795         329 :     z = algtobasis(nf, z);
     796         329 :     if (!ispower(gel(z,1), stoi(n), px)) return gc_long(av, 0);
     797         147 :     if (px) *px = gerepileupto(av, *px); else set_avma(av);
     798         147 :     return 1;
     799             :   }
     800        7381 :   if (n <= 0)
     801           0 :     pari_err_DOMAIN("nfeltispower","exponent","<=",gen_0,stoi(n));
     802        7381 :   z = nf_to_scalar_or_alg(nf, z);
     803        7381 :   if (n==1)
     804             :   {
     805           0 :     if (px) *px = gerepilecopy(av, z);
     806           0 :     return 1;
     807             :   }
     808        7381 :   R = nfroots(nf, gsub(pol_xn(n, v), z));
     809        7381 :   delete_var(); if (lg(R) == 1) return gc_long(av, 0);
     810        3157 :   if (px) *px = gerepilecopy(av, nf_to_scalar_or_basis(nf, gel(R,1)));
     811        3143 :   else set_avma(av);
     812        3157 :   return 1;
     813             : }
     814             : 
     815             : static GEN
     816          56 : idmulred(void *nf, GEN x, GEN y) { return idealmulred((GEN) nf, x, y); }
     817             : static GEN
     818         413 : idpowred(void *nf, GEN x, GEN n) { return idealpowred((GEN) nf, x, n); }
     819             : static GEN
     820       72020 : idmul(void *nf, GEN x, GEN y) { return idealmul((GEN) nf, x, y); }
     821             : static GEN
     822       87971 : idpow(void *nf, GEN x, GEN n) { return idealpow((GEN) nf, x, n); }
     823             : GEN
     824       86367 : idealfactorback(GEN nf, GEN L, GEN e, long red)
     825             : {
     826       86367 :   nf = checknf(nf);
     827       86367 :   if (red) return gen_factorback(L, e, (void*)nf, &idmulred, &idpowred, NULL);
     828       86010 :   if (!e && typ(L) == t_MAT && lg(L) == 3) { e = gel(L,2); L = gel(L,1); }
     829       86010 :   if (is_vec_t(typ(L)) && RgV_is_prV(L))
     830             :   { /* don't use gen_factorback since *= pr^v can be done more efficiently */
     831       65376 :     pari_sp av = avma;
     832       65376 :     long i, l = lg(L);
     833             :     GEN a;
     834       65376 :     if (!e) e = const_vec(l-1, gen_1);
     835       62520 :     else switch(typ(e))
     836             :     {
     837        7768 :       case t_VECSMALL: e = zv_to_ZV(e); break;
     838       54752 :       case t_VEC: case t_COL:
     839       54752 :         if (!RgV_is_ZV(e))
     840           0 :           pari_err_TYPE("factorback [not an exponent vector]", e);
     841       54752 :         break;
     842           0 :       default: pari_err_TYPE("idealfactorback", e);
     843             :     }
     844       65376 :     if (l != lg(e))
     845           0 :       pari_err_TYPE("factorback [not an exponent vector]", e);
     846       65376 :     if (l == 1 || ZV_equal0(e)) return gc_const(av, gen_1);
     847       23711 :     a = idealpow(nf, gel(L,1), gel(e,1));
     848      252075 :     for (i = 2; i < l; i++)
     849      228364 :       if (signe(gel(e,i))) a = idealmulpowprime(nf, a, gel(L,i), gel(e,i));
     850       23711 :     return gerepileupto(av, a);
     851             :   }
     852       20634 :   return gen_factorback(L, e, (void*)nf, &idmul, &idpow, NULL);
     853             : }
     854             : static GEN
     855      327960 : eltmul(void *nf, GEN x, GEN y) { return nfmul((GEN) nf, x, y); }
     856             : static GEN
     857      465367 : eltpow(void *nf, GEN x, GEN n) { return nfpow((GEN) nf, x, n); }
     858             : GEN
     859      265474 : nffactorback(GEN nf, GEN L, GEN e)
     860      265474 : { return gen_factorback(L, e, (void*)checknf(nf), &eltmul, &eltpow, NULL); }
     861             : 
     862             : static GEN
     863     3099304 : _nf_red(void *E, GEN x) { (void)E; return gcopy(x); }
     864             : 
     865             : static GEN
     866    12672932 : _nf_add(void *E, GEN x, GEN y) { return nfadd((GEN)E,x,y); }
     867             : 
     868             : static GEN
     869      751655 : _nf_neg(void *E, GEN x) { (void)E; return gneg(x); }
     870             : 
     871             : static GEN
     872    15218661 : _nf_mul(void *E, GEN x, GEN y) { return nfmul((GEN)E,x,y); }
     873             : 
     874             : static GEN
     875       53959 : _nf_inv(void *E, GEN x) { return nfinv((GEN)E,x); }
     876             : 
     877             : static GEN
     878       11128 : _nf_s(void *E, long x) { (void)E; return stoi(x); }
     879             : 
     880             : static const struct bb_field nf_field={_nf_red,_nf_add,_nf_mul,_nf_neg,
     881             :                                         _nf_inv,&gequal0,_nf_s };
     882             : 
     883      227960 : const struct bb_field *get_nf_field(void **E, GEN nf)
     884      227960 : { *E = (void*)nf; return &nf_field; }
     885             : 
     886             : GEN
     887          14 : nfM_det(GEN nf, GEN M)
     888             : {
     889             :   void *E;
     890          14 :   const struct bb_field *S = get_nf_field(&E, nf);
     891          14 :   return gen_det(M, E, S);
     892             : }
     893             : GEN
     894       11114 : nfM_inv(GEN nf, GEN M)
     895             : {
     896             :   void *E;
     897       11114 :   const struct bb_field *S = get_nf_field(&E, nf);
     898       11114 :   return gen_Gauss(M, matid(lg(M)-1), E, S);
     899             : }
     900             : 
     901             : GEN
     902           0 : nfM_ker(GEN nf, GEN M)
     903             : {
     904             :    void *E;
     905           0 :    const struct bb_field *S = get_nf_field(&E, nf);
     906           0 :    return gen_ker(M, 0, E, S);
     907             : }
     908             : 
     909             : GEN
     910       10610 : nfM_mul(GEN nf, GEN A, GEN B)
     911             : {
     912             :   void *E;
     913       10610 :   const struct bb_field *S = get_nf_field(&E, nf);
     914       10610 :   return gen_matmul(A, B, E, S);
     915             : }
     916             : GEN
     917      206222 : nfM_nfC_mul(GEN nf, GEN A, GEN B)
     918             : {
     919             :   void *E;
     920      206222 :   const struct bb_field *S = get_nf_field(&E, nf);
     921      206222 :   return gen_matcolmul(A, B, E, S);
     922             : }
     923             : 
     924             : /* valuation of integral x (ZV), with resp. to prime ideal pr */
     925             : long
     926    24032667 : ZC_nfvalrem(GEN x, GEN pr, GEN *newx)
     927             : {
     928    24032667 :   pari_sp av = avma;
     929             :   long i, v, l;
     930    24032667 :   GEN r, y, p = pr_get_p(pr), mul = pr_get_tau(pr);
     931             : 
     932             :   /* p inert */
     933    24032678 :   if (typ(mul) == t_INT) return newx? ZV_pvalrem(x, p, newx):ZV_pval(x, p);
     934    23026632 :   y = cgetg_copy(x, &l); /* will hold the new x */
     935    23027053 :   x = leafcopy(x);
     936    37199792 :   for(v=0;; v++)
     937             :   {
     938   143072866 :     for (i=1; i<l; i++)
     939             :     { /* is (x.b)[i] divisible by p ? */
     940   128894909 :       gel(y,i) = dvmdii(ZMrow_ZC_mul(mul,x,i),p,&r);
     941   128898125 :       if (r != gen_0) { if (newx) *newx = x; return v; }
     942             :     }
     943    14177957 :     swap(x, y);
     944    14177957 :     if (!newx && (v & 0xf) == 0xf) v += pr_get_e(pr) * ZV_pvalrem(x, p, &x);
     945    14177957 :     if (gc_needed(av,1))
     946             :     {
     947           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"ZC_nfvalrem, v >= %ld", v);
     948           0 :       gerepileall(av, 2, &x, &y);
     949             :     }
     950             :   }
     951             : }
     952             : long
     953    19756427 : ZC_nfval(GEN x, GEN P)
     954    19756427 : { return ZC_nfvalrem(x, P, NULL); }
     955             : 
     956             : /* v_P(x) != 0, x a ZV. Simpler version of ZC_nfvalrem */
     957             : int
     958     1250177 : ZC_prdvd(GEN x, GEN P)
     959             : {
     960     1250177 :   pari_sp av = avma;
     961             :   long i, l;
     962     1250177 :   GEN p = pr_get_p(P), mul = pr_get_tau(P);
     963     1250196 :   if (typ(mul) == t_INT) return ZV_Z_dvd(x, p);
     964     1249650 :   l = lg(x);
     965     5063190 :   for (i=1; i<l; i++)
     966     4545638 :     if (!dvdii(ZMrow_ZC_mul(mul,x,i), p)) return gc_bool(av,0);
     967      517552 :   return gc_bool(av,1);
     968             : }
     969             : 
     970             : int
     971         357 : pr_equal(GEN P, GEN Q)
     972             : {
     973         357 :   GEN gQ, p = pr_get_p(P);
     974         357 :   long e = pr_get_e(P), f = pr_get_f(P), n;
     975         357 :   if (!equalii(p, pr_get_p(Q)) || e != pr_get_e(Q) || f != pr_get_f(Q))
     976         336 :     return 0;
     977          21 :   gQ = pr_get_gen(Q); n = lg(gQ)-1;
     978          21 :   if (2*e*f > n) return 1; /* room for only one such pr */
     979          14 :   return ZV_equal(pr_get_gen(P), gQ) || ZC_prdvd(gQ, P);
     980             : }
     981             : 
     982             : GEN
     983      420735 : famat_nfvalrem(GEN nf, GEN x, GEN pr, GEN *py)
     984             : {
     985      420735 :   pari_sp av = avma;
     986      420735 :   GEN P = gel(x,1), E = gel(x,2), V = gen_0, y = NULL;
     987      420735 :   long l = lg(P), simplify = 0, i;
     988      420735 :   if (py) { *py = gen_1; y = cgetg(l, t_COL); }
     989             : 
     990     2259155 :   for (i = 1; i < l; i++)
     991             :   {
     992     1838420 :     GEN e = gel(E,i);
     993             :     long v;
     994     1838420 :     if (!signe(e))
     995             :     {
     996           7 :       if (py) gel(y,i) = gen_1;
     997           7 :       simplify = 1; continue;
     998             :     }
     999     1838413 :     v = nfvalrem(nf, gel(P,i), pr, py? &gel(y,i): NULL);
    1000     1838413 :     if (v == LONG_MAX) { set_avma(av); if (py) *py = gen_0; return mkoo(); }
    1001     1838413 :     V = addmulii(V, stoi(v), e);
    1002             :   }
    1003      420735 :   if (!py) V = gerepileuptoint(av, V);
    1004             :   else
    1005             :   {
    1006          56 :     y = mkmat2(y, gel(x,2));
    1007          56 :     if (simplify) y = famat_remove_trivial(y);
    1008          56 :     gerepileall(av, 2, &V, &y); *py = y;
    1009             :   }
    1010      420735 :   return V;
    1011             : }
    1012             : long
    1013     5633074 : nfval(GEN nf, GEN x, GEN pr)
    1014             : {
    1015     5633074 :   pari_sp av = avma;
    1016             :   long w, e;
    1017             :   GEN cx, p;
    1018             : 
    1019     5633074 :   if (gequal0(x)) return LONG_MAX;
    1020     5619615 :   nf = checknf(nf);
    1021     5619611 :   checkprid(pr);
    1022     5619600 :   p = pr_get_p(pr);
    1023     5619596 :   e = pr_get_e(pr);
    1024     5619592 :   x = nf_to_scalar_or_basis(nf, x);
    1025     5619550 :   if (typ(x) != t_COL) return e*Q_pval(x,p);
    1026     2381021 :   x = Q_primitive_part(x, &cx);
    1027     2381027 :   w = ZC_nfval(x,pr);
    1028     2380990 :   if (cx) w += e*Q_pval(cx,p);
    1029     2380994 :   return gc_long(av,w);
    1030             : }
    1031             : 
    1032             : /* want to write p^v = uniformizer^(e*v) * z^v, z coprime to pr */
    1033             : /* z := tau^e / p^(e-1), algebraic integer coprime to pr; return z^v */
    1034             : static GEN
    1035      973413 : powp(GEN nf, GEN pr, long v)
    1036             : {
    1037             :   GEN b, z;
    1038             :   long e;
    1039      973413 :   if (!v) return gen_1;
    1040      446810 :   b = pr_get_tau(pr);
    1041      446810 :   if (typ(b) == t_INT) return gen_1;
    1042      131320 :   e = pr_get_e(pr);
    1043      131320 :   z = gel(b,1);
    1044      131320 :   if (e != 1) z = gdiv(nfpow_u(nf, z, e), powiu(pr_get_p(pr),e-1));
    1045      131320 :   if (v < 0) { v = -v; z = nfinv(nf, z); }
    1046      131320 :   if (v != 1) z = nfpow_u(nf, z, v);
    1047      131320 :   return z;
    1048             : }
    1049             : long
    1050     3662668 : nfvalrem(GEN nf, GEN x, GEN pr, GEN *py)
    1051             : {
    1052     3662668 :   pari_sp av = avma;
    1053             :   long w, e;
    1054             :   GEN cx, p, t;
    1055             : 
    1056     3662668 :   if (!py) return nfval(nf,x,pr);
    1057     1810892 :   if (gequal0(x)) { *py = gen_0; return LONG_MAX; }
    1058     1810835 :   nf = checknf(nf);
    1059     1810836 :   checkprid(pr);
    1060     1810834 :   p = pr_get_p(pr);
    1061     1810834 :   e = pr_get_e(pr);
    1062     1810834 :   x = nf_to_scalar_or_basis(nf, x);
    1063     1810834 :   if (typ(x) != t_COL) {
    1064      557851 :     w = Q_pvalrem(x,p, py);
    1065      557851 :     if (!w) { *py = gerepilecopy(av, x); return 0; }
    1066      349272 :     *py = gerepileupto(av, gmul(powp(nf, pr, w), *py));
    1067      349272 :     return e*w;
    1068             :   }
    1069     1252983 :   x = Q_primitive_part(x, &cx);
    1070     1252978 :   w = ZC_nfvalrem(x,pr, py);
    1071     1252966 :   if (cx)
    1072             :   {
    1073      624141 :     long v = Q_pvalrem(cx,p, &t);
    1074      624141 :     *py = nfmul(nf, *py, gmul(powp(nf,pr,v), t));
    1075      624141 :     *py = gerepileupto(av, *py);
    1076      624141 :     w += e*v;
    1077             :   }
    1078             :   else
    1079      628825 :     *py = gerepilecopy(av, *py);
    1080     1252992 :   return w;
    1081             : }
    1082             : GEN
    1083       15015 : gpnfvalrem(GEN nf, GEN x, GEN pr, GEN *py)
    1084             : {
    1085             :   long v;
    1086       15015 :   if (is_famat(x)) return famat_nfvalrem(nf, x, pr, py);
    1087       15008 :   v = nfvalrem(nf,x,pr,py);
    1088       15008 :   return v == LONG_MAX? mkoo(): stoi(v);
    1089             : }
    1090             : 
    1091             : /* true nf */
    1092             : GEN
    1093      335859 : coltoalg(GEN nf, GEN x)
    1094             : {
    1095      335859 :   return mkpolmod( nf_to_scalar_or_alg(nf, x), nf_get_pol(nf) );
    1096             : }
    1097             : 
    1098             : GEN
    1099      406283 : basistoalg(GEN nf, GEN x)
    1100             : {
    1101             :   GEN T;
    1102             : 
    1103      406283 :   nf = checknf(nf);
    1104      406283 :   switch(typ(x))
    1105             :   {
    1106      329594 :     case t_COL: {
    1107      329594 :       pari_sp av = avma;
    1108      329594 :       return gerepilecopy(av, coltoalg(nf, x));
    1109             :     }
    1110       40768 :     case t_POLMOD:
    1111       40768 :       T = nf_get_pol(nf);
    1112       40768 :       if (!RgX_equal_var(T,gel(x,1)))
    1113           0 :         pari_err_MODULUS("basistoalg", T,gel(x,1));
    1114       40768 :       return gcopy(x);
    1115        6321 :     case t_POL:
    1116        6321 :       T = nf_get_pol(nf);
    1117        6321 :       if (varn(T) != varn(x)) pari_err_VAR("basistoalg",x,T);
    1118        6314 :       retmkpolmod(RgX_rem(x, T), ZX_copy(T));
    1119       29600 :     case t_INT:
    1120             :     case t_FRAC:
    1121       29600 :       T = nf_get_pol(nf);
    1122       29600 :       retmkpolmod(gcopy(x), ZX_copy(T));
    1123           0 :     default:
    1124           0 :       pari_err_TYPE("basistoalg",x);
    1125             :       return NULL; /* LCOV_EXCL_LINE */
    1126             :   }
    1127             : }
    1128             : 
    1129             : /* true nf, x a t_POL */
    1130             : static GEN
    1131     4590341 : pol_to_scalar_or_basis(GEN nf, GEN x)
    1132             : {
    1133     4590341 :   GEN T = nf_get_pol(nf);
    1134     4590340 :   long l = lg(x);
    1135     4590340 :   if (varn(x) != varn(T)) pari_err_VAR("nf_to_scalar_or_basis", x,T);
    1136     4590235 :   if (l >= lg(T)) { x = RgX_rem(x, T); l = lg(x); }
    1137     4590235 :   if (l == 2) return gen_0;
    1138     3578280 :   if (l == 3)
    1139             :   {
    1140      839246 :     x = gel(x,2);
    1141      839246 :     if (!is_rational_t(typ(x))) pari_err_TYPE("nf_to_scalar_or_basis",x);
    1142      839239 :     return x;
    1143             :   }
    1144     2739034 :   return poltobasis(nf,x);
    1145             : }
    1146             : /* Assume nf is a genuine nf. */
    1147             : GEN
    1148   162242185 : nf_to_scalar_or_basis(GEN nf, GEN x)
    1149             : {
    1150   162242185 :   switch(typ(x))
    1151             :   {
    1152    97667901 :     case t_INT: case t_FRAC:
    1153    97667901 :       return x;
    1154      565078 :     case t_POLMOD:
    1155      565078 :       x = checknfelt_mod(nf,x,"nf_to_scalar_or_basis");
    1156      564950 :       switch(typ(x))
    1157             :       {
    1158       85848 :         case t_INT: case t_FRAC: return x;
    1159      479102 :         case t_POL: return pol_to_scalar_or_basis(nf,x);
    1160             :       }
    1161           0 :       break;
    1162     4111239 :     case t_POL: return pol_to_scalar_or_basis(nf,x);
    1163    59901826 :     case t_COL:
    1164    59901826 :       if (lg(x)-1 != nf_get_degree(nf)) break;
    1165    59901469 :       return QV_isscalar(x)? gel(x,1): x;
    1166             :   }
    1167          96 :   pari_err_TYPE("nf_to_scalar_or_basis",x);
    1168             :   return NULL; /* LCOV_EXCL_LINE */
    1169             : }
    1170             : /* Let x be a polynomial with coefficients in Q or nf. Return the same
    1171             :  * polynomial with coefficients expressed as vectors (on the integral basis).
    1172             :  * No consistency checks, not memory-clean. */
    1173             : GEN
    1174       29221 : RgX_to_nfX(GEN nf, GEN x)
    1175      237501 : { pari_APPLY_pol_normalized(nf_to_scalar_or_basis(nf, gel(x,i))); }
    1176             : 
    1177             : /* Assume nf is a genuine nf. */
    1178             : GEN
    1179     4825947 : nf_to_scalar_or_alg(GEN nf, GEN x)
    1180             : {
    1181     4825947 :   switch(typ(x))
    1182             :   {
    1183       85258 :     case t_INT: case t_FRAC:
    1184       85258 :       return x;
    1185         427 :     case t_POLMOD:
    1186         427 :       x = checknfelt_mod(nf,x,"nf_to_scalar_or_alg");
    1187         427 :       if (typ(x) != t_POL) return x;
    1188             :       /* fall through */
    1189             :     case t_POL:
    1190             :     {
    1191        5334 :       GEN T = nf_get_pol(nf);
    1192        5334 :       long l = lg(x);
    1193        5334 :       if (varn(x) != varn(T)) pari_err_VAR("nf_to_scalar_or_alg", x,T);
    1194        5334 :       if (l >= lg(T)) { x = RgX_rem(x, T); l = lg(x); }
    1195        5334 :       if (l == 2) return gen_0;
    1196        5334 :       if (l == 3) return gel(x,2);
    1197        3794 :       return x;
    1198             :     }
    1199     4735310 :     case t_COL:
    1200             :     {
    1201             :       GEN dx;
    1202     4735310 :       if (lg(x)-1 != nf_get_degree(nf)) break;
    1203     9375722 :       if (QV_isscalar(x)) return gel(x,1);
    1204     4640363 :       x = Q_remove_denom(x, &dx);
    1205     4640376 :       x = RgV_RgC_mul(nf_get_zkprimpart(nf), x);
    1206     4640448 :       dx = mul_denom(dx, nf_get_zkden(nf));
    1207     4640435 :       return gdiv(x,dx);
    1208             :     }
    1209             :   }
    1210          54 :   pari_err_TYPE("nf_to_scalar_or_alg",x);
    1211             :   return NULL; /* LCOV_EXCL_LINE */
    1212             : }
    1213             : 
    1214             : /* gmul(A, RgX_to_RgC(x)), A t_MAT of compatible dimensions */
    1215             : GEN
    1216        1365 : RgM_RgX_mul(GEN A, GEN x)
    1217             : {
    1218        1365 :   long i, l = lg(x)-1;
    1219             :   GEN z;
    1220        1365 :   if (l == 1) return zerocol(nbrows(A));
    1221        1351 :   z = gmul(gel(x,2), gel(A,1));
    1222        2555 :   for (i = 2; i < l; i++)
    1223        1204 :     if (!gequal0(gel(x,i+1))) z = gadd(z, gmul(gel(x,i+1), gel(A,i)));
    1224        1351 :   return z;
    1225             : }
    1226             : GEN
    1227    10366675 : ZM_ZX_mul(GEN A, GEN x)
    1228             : {
    1229    10366675 :   long i, l = lg(x)-1;
    1230             :   GEN z;
    1231    10366675 :   if (l == 1) return zerocol(nbrows(A));
    1232    10365541 :   z = ZC_Z_mul(gel(A,1), gel(x,2));
    1233    32343102 :   for (i = 2; i < l ; i++)
    1234    21979980 :     if (signe(gel(x,i+1))) z = ZC_add(z, ZC_Z_mul(gel(A,i), gel(x,i+1)));
    1235    10363122 :   return z;
    1236             : }
    1237             : /* x a t_POL, nf a genuine nf. No garbage collecting. No check.  */
    1238             : GEN
    1239     9766961 : poltobasis(GEN nf, GEN x)
    1240             : {
    1241     9766961 :   GEN d, T = nf_get_pol(nf);
    1242     9766963 :   if (varn(x) != varn(T)) pari_err_VAR( "poltobasis", x,T);
    1243     9766830 :   if (degpol(x) >= degpol(T)) x = RgX_rem(x,T);
    1244     9766700 :   x = Q_remove_denom(x, &d);
    1245     9767012 :   if (!RgX_is_ZX(x)) pari_err_TYPE("poltobasis",x);
    1246     9766943 :   x = ZM_ZX_mul(nf_get_invzk(nf), x);
    1247     9765208 :   if (d) x = RgC_Rg_div(x, d);
    1248     9765252 :   return x;
    1249             : }
    1250             : 
    1251             : GEN
    1252      952883 : algtobasis(GEN nf, GEN x)
    1253             : {
    1254             :   pari_sp av;
    1255             : 
    1256      952883 :   nf = checknf(nf);
    1257      952882 :   switch(typ(x))
    1258             :   {
    1259      140547 :     case t_POLMOD:
    1260      140547 :       if (!RgX_equal_var(nf_get_pol(nf),gel(x,1)))
    1261           7 :         pari_err_MODULUS("algtobasis", nf_get_pol(nf),gel(x,1));
    1262      140540 :       x = gel(x,2);
    1263      140540 :       switch(typ(x))
    1264             :       {
    1265       11340 :         case t_INT:
    1266       11340 :         case t_FRAC: return scalarcol(x, nf_get_degree(nf));
    1267      129200 :         case t_POL:
    1268      129200 :           av = avma;
    1269      129200 :           return gerepileupto(av,poltobasis(nf,x));
    1270             :       }
    1271           0 :       break;
    1272             : 
    1273      250761 :     case t_POL:
    1274      250761 :       av = avma;
    1275      250761 :       return gerepileupto(av,poltobasis(nf,x));
    1276             : 
    1277       83667 :     case t_COL:
    1278       83667 :       if (!RgV_is_QV(x)) pari_err_TYPE("nfalgtobasis",x);
    1279       83659 :       if (lg(x)-1 != nf_get_degree(nf)) pari_err_DIM("nfalgtobasis");
    1280       83659 :       return gcopy(x);
    1281             : 
    1282      477909 :     case t_INT:
    1283      477909 :     case t_FRAC: return scalarcol(x, nf_get_degree(nf));
    1284             :   }
    1285           0 :   pari_err_TYPE("algtobasis",x);
    1286             :   return NULL; /* LCOV_EXCL_LINE */
    1287             : }
    1288             : 
    1289             : GEN
    1290       55104 : rnfbasistoalg(GEN rnf,GEN x)
    1291             : {
    1292       55104 :   const char *f = "rnfbasistoalg";
    1293             :   long lx, i;
    1294       55104 :   pari_sp av = avma;
    1295             :   GEN z, nf, R, T;
    1296             : 
    1297       55104 :   checkrnf(rnf);
    1298       55104 :   nf = rnf_get_nf(rnf);
    1299       55104 :   T = nf_get_pol(nf);
    1300       55104 :   R = QXQX_to_mod_shallow(rnf_get_pol(rnf), T);
    1301       55104 :   switch(typ(x))
    1302             :   {
    1303         875 :     case t_COL:
    1304         875 :       z = cgetg_copy(x, &lx);
    1305        2597 :       for (i=1; i<lx; i++)
    1306             :       {
    1307        1778 :         GEN c = nf_to_scalar_or_alg(nf, gel(x,i));
    1308        1722 :         if (typ(c) == t_POL) c = mkpolmod(c,T);
    1309        1722 :         gel(z,i) = c;
    1310             :       }
    1311         819 :       z = RgV_RgC_mul(gel(rnf_get_zk(rnf),1), z);
    1312         735 :       return gerepileupto(av, gmodulo(z,R));
    1313             : 
    1314       34965 :     case t_POLMOD:
    1315       34965 :       x = polmod_nffix(f, rnf, x, 0);
    1316       34692 :       if (typ(x) != t_POL) break;
    1317       16046 :       retmkpolmod(RgX_copy(x), RgX_copy(R));
    1318        1582 :     case t_POL:
    1319        1582 :       if (varn(x) == varn(T)) { RgX_check_QX(x,f); x = gmodulo(x,T); break; }
    1320        1337 :       if (varn(x) == varn(R))
    1321             :       {
    1322        1281 :         x = RgX_nffix(f,nf_get_pol(nf),x,0);
    1323        1281 :         return gmodulo(x, R);
    1324             :       }
    1325          56 :       pari_err_VAR(f, x,R);
    1326             :   }
    1327       36517 :   retmkpolmod(scalarpol(x, varn(R)), RgX_copy(R));
    1328             : }
    1329             : 
    1330             : GEN
    1331        2653 : matbasistoalg(GEN nf,GEN x)
    1332             : {
    1333             :   long i, j, li, lx;
    1334        2653 :   GEN z = cgetg_copy(x, &lx);
    1335             : 
    1336        2653 :   if (lx == 1) return z;
    1337        2646 :   switch(typ(x))
    1338             :   {
    1339          77 :     case t_VEC: case t_COL:
    1340         273 :       for (i=1; i<lx; i++) gel(z,i) = basistoalg(nf, gel(x,i));
    1341          77 :       return z;
    1342        2569 :     case t_MAT: break;
    1343           0 :     default: pari_err_TYPE("matbasistoalg",x);
    1344             :   }
    1345        2569 :   li = lgcols(x);
    1346        9352 :   for (j=1; j<lx; j++)
    1347             :   {
    1348        6783 :     GEN c = cgetg(li,t_COL), xj = gel(x,j);
    1349        6783 :     gel(z,j) = c;
    1350       30709 :     for (i=1; i<li; i++) gel(c,i) = basistoalg(nf, gel(xj,i));
    1351             :   }
    1352        2569 :   return z;
    1353             : }
    1354             : 
    1355             : GEN
    1356       31946 : matalgtobasis(GEN nf,GEN x)
    1357             : {
    1358             :   long i, j, li, lx;
    1359       31946 :   GEN z = cgetg_copy(x, &lx);
    1360             : 
    1361       31946 :   if (lx == 1) return z;
    1362       31484 :   switch(typ(x))
    1363             :   {
    1364       31477 :     case t_VEC: case t_COL:
    1365       82565 :       for (i=1; i<lx; i++) gel(z,i) = algtobasis(nf, gel(x,i));
    1366       31478 :       return z;
    1367           7 :     case t_MAT: break;
    1368           0 :     default: pari_err_TYPE("matalgtobasis",x);
    1369             :   }
    1370           7 :   li = lgcols(x);
    1371          14 :   for (j=1; j<lx; j++)
    1372             :   {
    1373           7 :     GEN c = cgetg(li,t_COL), xj = gel(x,j);
    1374           7 :     gel(z,j) = c;
    1375          21 :     for (i=1; i<li; i++) gel(c,i) = algtobasis(nf, gel(xj,i));
    1376             :   }
    1377           7 :   return z;
    1378             : }
    1379             : GEN
    1380       11177 : RgM_to_nfM(GEN nf,GEN x)
    1381             : {
    1382             :   long i, j, li, lx;
    1383       11177 :   GEN z = cgetg_copy(x, &lx);
    1384             : 
    1385       11177 :   if (lx == 1) return z;
    1386       11177 :   li = lgcols(x);
    1387       82810 :   for (j=1; j<lx; j++)
    1388             :   {
    1389       71633 :     GEN c = cgetg(li,t_COL), xj = gel(x,j);
    1390       71633 :     gel(z,j) = c;
    1391      466633 :     for (i=1; i<li; i++) gel(c,i) = nf_to_scalar_or_basis(nf, gel(xj,i));
    1392             :   }
    1393       11177 :   return z;
    1394             : }
    1395             : GEN
    1396      149392 : RgC_to_nfC(GEN nf, GEN x)
    1397      913026 : { pari_APPLY_type(t_COL, nf_to_scalar_or_basis(nf, gel(x,i))) }
    1398             : 
    1399             : /* x a t_POLMOD, supposedly in rnf = K[z]/(T), K = Q[y]/(Tnf) */
    1400             : GEN
    1401      169037 : polmod_nffix(const char *f, GEN rnf, GEN x, int lift)
    1402      169037 : { return polmod_nffix2(f, rnf_get_nfpol(rnf), rnf_get_pol(rnf), x,lift); }
    1403             : GEN
    1404      169128 : polmod_nffix2(const char *f, GEN T, GEN R, GEN x, int lift)
    1405             : {
    1406      169128 :   if (RgX_equal_var(gel(x,1), R))
    1407             :   {
    1408      141036 :     x = gel(x,2);
    1409      141036 :     if (typ(x) == t_POL && varn(x) == varn(R))
    1410             :     {
    1411      106098 :       x = RgX_nffix(f, T, x, lift);
    1412      106098 :       switch(lg(x))
    1413             :       {
    1414        5831 :         case 2: return gen_0;
    1415       13604 :         case 3: return gel(x,2);
    1416             :       }
    1417       86663 :       return x;
    1418             :     }
    1419             :   }
    1420       63030 :   return Rg_nffix(f, T, x, lift);
    1421             : }
    1422             : GEN
    1423        1428 : rnfalgtobasis(GEN rnf,GEN x)
    1424             : {
    1425        1428 :   const char *f = "rnfalgtobasis";
    1426        1428 :   pari_sp av = avma;
    1427             :   GEN T, R;
    1428             : 
    1429        1428 :   checkrnf(rnf);
    1430        1428 :   R = rnf_get_pol(rnf);
    1431        1428 :   T = rnf_get_nfpol(rnf);
    1432        1428 :   switch(typ(x))
    1433             :   {
    1434          98 :     case t_COL:
    1435          98 :       if (lg(x)-1 != rnf_get_degree(rnf)) pari_err_DIM(f);
    1436          49 :       x = RgV_nffix(f, T, x, 0);
    1437          42 :       return gerepilecopy(av, x);
    1438             : 
    1439        1162 :     case t_POLMOD:
    1440        1162 :       x = polmod_nffix(f, rnf, x, 0);
    1441        1057 :       if (typ(x) != t_POL) break;
    1442         714 :       return gerepileupto(av, RgM_RgX_mul(rnf_get_invzk(rnf), x));
    1443         112 :     case t_POL:
    1444         112 :       if (varn(x) == varn(T))
    1445             :       {
    1446          42 :         RgX_check_QX(x,f);
    1447          28 :         if (degpol(x) >= degpol(T)) x = RgX_rem(x,T);
    1448          28 :         x = mkpolmod(x,T); break;
    1449             :       }
    1450          70 :       x = RgX_nffix(f, T, x, 0);
    1451          56 :       if (degpol(x) >= degpol(R)) x = RgX_rem(x, R);
    1452          56 :       return gerepileupto(av, RgM_RgX_mul(rnf_get_invzk(rnf), x));
    1453             :   }
    1454         427 :   return gerepileupto(av, scalarcol(x, rnf_get_degree(rnf)));
    1455             : }
    1456             : 
    1457             : /* Given a and b in nf, gives an algebraic integer y in nf such that a-b.y
    1458             :  * is "small" */
    1459             : GEN
    1460         259 : nfdiveuc(GEN nf, GEN a, GEN b)
    1461             : {
    1462         259 :   pari_sp av = avma;
    1463         259 :   a = nfdiv(nf,a,b);
    1464         259 :   return gerepileupto(av, ground(a));
    1465             : }
    1466             : 
    1467             : /* Given a and b in nf, gives a "small" algebraic integer r in nf
    1468             :  * of the form a-b.y */
    1469             : GEN
    1470         259 : nfmod(GEN nf, GEN a, GEN b)
    1471             : {
    1472         259 :   pari_sp av = avma;
    1473         259 :   GEN p1 = gneg_i(nfmul(nf,b,ground(nfdiv(nf,a,b))));
    1474         259 :   return gerepileupto(av, nfadd(nf,a,p1));
    1475             : }
    1476             : 
    1477             : /* Given a and b in nf, gives a two-component vector [y,r] in nf such
    1478             :  * that r=a-b.y is "small". */
    1479             : GEN
    1480         259 : nfdivrem(GEN nf, GEN a, GEN b)
    1481             : {
    1482         259 :   pari_sp av = avma;
    1483         259 :   GEN p1,z, y = ground(nfdiv(nf,a,b));
    1484             : 
    1485         259 :   p1 = gneg_i(nfmul(nf,b,y));
    1486         259 :   z = cgetg(3,t_VEC);
    1487         259 :   gel(z,1) = gcopy(y);
    1488         259 :   gel(z,2) = nfadd(nf,a,p1); return gerepileupto(av, z);
    1489             : }
    1490             : 
    1491             : /*************************************************************************/
    1492             : /**                                                                     **/
    1493             : /**                   LOGARITHMIC EMBEDDINGS                            **/
    1494             : /**                                                                     **/
    1495             : /*************************************************************************/
    1496             : 
    1497             : static int
    1498     4612156 : low_prec(GEN x)
    1499             : {
    1500     4612156 :   switch(typ(x))
    1501             :   {
    1502           0 :     case t_INT: return !signe(x);
    1503     4612156 :     case t_REAL: return !signe(x) || realprec(x) <= DEFAULTPREC;
    1504           0 :     default: return 0;
    1505             :   }
    1506             : }
    1507             : 
    1508             : static GEN
    1509       23117 : cxlog_1(GEN nf) { return zerocol(lg(nf_get_roots(nf))-1); }
    1510             : static GEN
    1511         532 : cxlog_m1(GEN nf, long prec)
    1512             : {
    1513         532 :   long i, l = lg(nf_get_roots(nf)), r1 = nf_get_r1(nf);
    1514         532 :   GEN v = cgetg(l, t_COL), p,  P;
    1515         532 :   p = mppi(prec); P = mkcomplex(gen_0, p);
    1516        1235 :   for (i = 1; i <= r1; i++) gel(v,i) = P; /* IPi*/
    1517         532 :   if (i < l) P = gmul2n(P,1);
    1518        1122 :   for (     ; i < l; i++) gel(v,i) = P; /* 2IPi */
    1519         532 :   return v;
    1520             : }
    1521             : static GEN
    1522     1715170 : ZC_cxlog(GEN nf, GEN x, long prec)
    1523             : {
    1524             :   long i, l, r1;
    1525             :   GEN v;
    1526     1715170 :   x = RgM_RgC_mul(nf_get_M(nf), Q_primpart(x));
    1527     1715171 :   l = lg(x); r1 = nf_get_r1(nf);
    1528     4330801 :   for (i = 1; i <= r1; i++)
    1529     2615630 :     if (low_prec(gel(x,i))) return NULL;
    1530     3514766 :   for (     ; i <  l;  i++)
    1531     1799596 :     if (low_prec(gnorm(gel(x,i)))) return NULL;
    1532     1715170 :   v = cgetg(l,t_COL);
    1533     4330800 :   for (i = 1; i <= r1; i++) gel(v,i) = glog(gel(x,i),prec);
    1534     3514765 :   for (     ; i <  l;  i++) gel(v,i) = gmul2n(glog(gel(x,i),prec),1);
    1535     1715171 :   return v;
    1536             : }
    1537             : static GEN
    1538      223284 : famat_cxlog(GEN nf, GEN fa, long prec)
    1539             : {
    1540      223284 :   GEN G, E, y = NULL;
    1541             :   long i, l;
    1542             : 
    1543      223284 :   if (typ(fa) != t_MAT) pari_err_TYPE("famat_cxlog",fa);
    1544      223284 :   if (lg(fa) == 1) return cxlog_1(nf);
    1545      223284 :   G = gel(fa,1);
    1546      223284 :   E = gel(fa,2); l = lg(E);
    1547     1119798 :   for (i = 1; i < l; i++)
    1548             :   {
    1549      896514 :     GEN t, e = gel(E,i), x = nf_to_scalar_or_basis(nf, gel(G,i));
    1550             :     /* multiplicative arch would be better (save logs), but exponents overflow
    1551             :      * [ could keep track of expo separately, but not worth it ] */
    1552      896514 :     switch(typ(x))
    1553             :     { /* ignore positive rationals */
    1554       16430 :       case t_FRAC: x = gel(x,1); /* fall through */
    1555      266513 :       case t_INT: if (signe(x) > 0) continue;
    1556          84 :         if (!mpodd(e)) continue;
    1557          28 :         t = cxlog_m1(nf, prec); /* we probably should not reach this line */
    1558          28 :         break;
    1559      630001 :       default: /* t_COL */
    1560      630001 :         t = ZC_cxlog(nf,x,prec); if (!t) return NULL;
    1561      630001 :         t = RgC_Rg_mul(t, e);
    1562             :     }
    1563      630029 :     y = y? RgV_add(y,t): t;
    1564             :   }
    1565      223284 :   return y ? y: cxlog_1(nf);
    1566             : }
    1567             : /* Archimedean components: [e_i Log( sigma_i(X) )], where X = primpart(x),
    1568             :  * and e_i = 1 (resp 2.) for i <= R1 (resp. > R1) */
    1569             : GEN
    1570     1309602 : nf_cxlog(GEN nf, GEN x, long prec)
    1571             : {
    1572     1309602 :   if (typ(x) == t_MAT) return famat_cxlog(nf,x,prec);
    1573     1086318 :   x = nf_to_scalar_or_basis(nf,x);
    1574     1086317 :   switch(typ(x))
    1575             :   {
    1576           0 :     case t_FRAC: x = gel(x,1); /* fall through */
    1577        1148 :     case t_INT:
    1578        1148 :       return signe(x) > 0? cxlog_1(nf): cxlog_m1(nf, prec);
    1579     1085169 :     default:
    1580     1085169 :       return ZC_cxlog(nf, x, prec);
    1581             :   }
    1582             : }
    1583             : GEN
    1584          97 : nfV_cxlog(GEN nf, GEN x, long prec)
    1585             : {
    1586             :   long i, l;
    1587          97 :   GEN v = cgetg_copy(x, &l);
    1588         167 :   for (i = 1; i < l; i++)
    1589          70 :     if (!(gel(v,i) = nf_cxlog(nf, gel(x,i), prec))) return NULL;
    1590          97 :   return v;
    1591             : }
    1592             : 
    1593             : static GEN
    1594       15239 : scalar_logembed(GEN nf, GEN u, GEN *emb)
    1595             : {
    1596             :   GEN v, logu;
    1597       15239 :   long i, s = signe(u), RU = lg(nf_get_roots(nf))-1, R1 = nf_get_r1(nf);
    1598             : 
    1599       15239 :   if (!s) pari_err_DOMAIN("nflogembed","argument","=",gen_0,u);
    1600       15239 :   v = cgetg(RU+1, t_COL); logu = logr_abs(u);
    1601       17234 :   for (i = 1; i <= R1; i++) gel(v,i) = logu;
    1602       15239 :   if (i <= RU)
    1603             :   {
    1604       14350 :     GEN logu2 = shiftr(logu,1);
    1605       55839 :     for (   ; i <= RU; i++) gel(v,i) = logu2;
    1606             :   }
    1607       15239 :   if (emb) *emb = const_col(RU, u);
    1608       15239 :   return v;
    1609             : }
    1610             : 
    1611             : static GEN
    1612        1309 : famat_logembed(GEN nf,GEN x,GEN *emb,long prec)
    1613             : {
    1614        1309 :   GEN A, M, T, a, t, g = gel(x,1), e = gel(x,2);
    1615        1309 :   long i, l = lg(e);
    1616             : 
    1617        1309 :   if (l == 1) return scalar_logembed(nf, real_1(prec), emb);
    1618        1309 :   A = NULL; T = emb? cgetg(l, t_COL): NULL;
    1619        1309 :   if (emb) *emb = M = mkmat2(T, e);
    1620       62132 :   for (i = 1; i < l; i++)
    1621             :   {
    1622       60823 :     a = nflogembed(nf, gel(g,i), &t, prec);
    1623       60823 :     if (!a) return NULL;
    1624       60823 :     a = RgC_Rg_mul(a, gel(e,i));
    1625       60823 :     A = A? RgC_add(A, a): a;
    1626       60823 :     if (emb) gel(T,i) = t;
    1627             :   }
    1628        1309 :   return A;
    1629             : }
    1630             : 
    1631             : /* Get archimedean components: [e_i log( | sigma_i(x) | )], with e_i = 1
    1632             :  * (resp 2.) for i <= R1 (resp. > R1) and set emb to the embeddings of x.
    1633             :  * Return NULL if precision problem */
    1634             : GEN
    1635       98706 : nflogembed(GEN nf, GEN x, GEN *emb, long prec)
    1636             : {
    1637             :   long i, l, r1;
    1638             :   GEN v, t;
    1639             : 
    1640       98706 :   if (typ(x) == t_MAT) return famat_logembed(nf,x,emb,prec);
    1641       97397 :   x = nf_to_scalar_or_basis(nf,x);
    1642       97397 :   if (typ(x) != t_COL) return scalar_logembed(nf, gtofp(x,prec), emb);
    1643       82158 :   x = RgM_RgC_mul(nf_get_M(nf), x);
    1644       82159 :   l = lg(x); r1 = nf_get_r1(nf); v = cgetg(l,t_COL);
    1645      109088 :   for (i = 1; i <= r1; i++)
    1646             :   {
    1647       26929 :     t = gabs(gel(x,i),prec); if (low_prec(t)) return NULL;
    1648       26929 :     gel(v,i) = glog(t,prec);
    1649             :   }
    1650      252161 :   for (   ; i < l; i++)
    1651             :   {
    1652      170002 :     t = gnorm(gel(x,i)); if (low_prec(t)) return NULL;
    1653      170002 :     gel(v,i) = glog(t,prec);
    1654             :   }
    1655       82159 :   if (emb) *emb = x;
    1656       82159 :   return v;
    1657             : }
    1658             : 
    1659             : /*************************************************************************/
    1660             : /**                                                                     **/
    1661             : /**                        REAL EMBEDDINGS                              **/
    1662             : /**                                                                     **/
    1663             : /*************************************************************************/
    1664             : static GEN
    1665      486474 : sarch_get_cyc(GEN sarch) { return gel(sarch,1); }
    1666             : static GEN
    1667     1556125 : sarch_get_archp(GEN sarch) { return gel(sarch,2); }
    1668             : static GEN
    1669      608795 : sarch_get_MI(GEN sarch) { return gel(sarch,3); }
    1670             : static GEN
    1671      608794 : sarch_get_lambda(GEN sarch) { return gel(sarch,4); }
    1672             : static GEN
    1673      608794 : sarch_get_F(GEN sarch) { return gel(sarch,5); }
    1674             : 
    1675             : /* true nf, x non-zero algebraic integer; return number of positive real roots
    1676             :  * of char_x */
    1677             : static long
    1678      910309 : num_positive(GEN nf, GEN x)
    1679             : {
    1680      910309 :   GEN T = nf_get_pol(nf), B, charx;
    1681      910308 :   long dnf, vnf, N, r1 = nf_get_r1(nf);
    1682      910308 :   x = nf_to_scalar_or_alg(nf, x);
    1683      910305 :   if (typ(x) != t_POL) return (signe(x) < 0)? 0: degpol(T);
    1684             :   /* x not a scalar */
    1685      904913 :   if (r1 == 1)
    1686             :   {
    1687       31346 :     long s = signe(ZX_resultant(T, Q_primpart(x)));
    1688       31346 :     return s > 0? 1: 0;
    1689             :   }
    1690      873567 :   charx = ZXQ_charpoly(x, T, 0);
    1691      873575 :   charx = ZX_radical(charx);
    1692      873572 :   N = degpol(T) / degpol(charx);
    1693             :   /* real places are unramified ? */
    1694      873567 :   if (N == 1 || ZX_sturm(charx) * N == r1)
    1695      872971 :     return ZX_sturmpart(charx, mkvec2(gen_0,mkoo())) * N;
    1696             :   /* painful case, multiply by random square until primitive */
    1697         596 :   dnf = nf_get_degree(nf);
    1698         596 :   vnf = varn(T);
    1699         596 :   B = int2n(10);
    1700             :   for(;;)
    1701           0 :   {
    1702         596 :     GEN y = RgXQ_sqr(random_FpX(dnf, vnf, B), T);
    1703         596 :     y = RgXQ_mul(x, y, T);
    1704         596 :     charx = ZXQ_charpoly(y, T, 0);
    1705         596 :     if (ZX_is_squarefree(charx))
    1706         596 :       return ZX_sturmpart(charx, mkvec2(gen_0,mkoo()));
    1707             :   }
    1708             : }
    1709             : 
    1710             : /* x a QC: return sigma_k(x) where 1 <= k <= r1+r2; correct but inefficient
    1711             :  * if x in Q. M = nf_get_M(nf) */
    1712             : static GEN
    1713        2140 : nfembed_i(GEN M, GEN x, long k)
    1714             : {
    1715        2140 :   long i, l = lg(M);
    1716        2140 :   GEN z = gel(x,1);
    1717       24380 :   for (i = 2; i < l; i++) z = gadd(z, gmul(gcoeff(M,k,i), gel(x,i)));
    1718        2140 :   return z;
    1719             : }
    1720             : GEN
    1721           0 : nfembed(GEN nf, GEN x, long k)
    1722             : {
    1723           0 :   pari_sp av = avma;
    1724           0 :   nf = checknf(nf);
    1725           0 :   x = nf_to_scalar_or_basis(nf,x);
    1726           0 :   if (typ(x) != t_COL) return gerepilecopy(av, x);
    1727           0 :   return gerepileupto(av, nfembed_i(nf_get_M(nf),x,k));
    1728             : }
    1729             : 
    1730             : /* x a ZC */
    1731             : static GEN
    1732       74778 : zk_embed(GEN M, GEN x, long k)
    1733             : {
    1734       74778 :   long i, l = lg(x);
    1735       74778 :   GEN z = gel(x,1); /* times M[k,1], which is 1 */
    1736      186121 :   for (i = 2; i < l; i++) z = mpadd(z, mpmul(gcoeff(M,k,i), gel(x,i)));
    1737       74778 :   return z;
    1738             : }
    1739             : 
    1740             : /* check that signs[i..#signs] == s; signs = NULL encodes "totally positive" */
    1741             : static int
    1742       24892 : oksigns(long l, GEN signs, long i, long s)
    1743             : {
    1744       24892 :   if (!signs) return s == 0;
    1745       26835 :   for (; i < l; i++)
    1746       19787 :     if (signs[i] != s) return 0;
    1747        7048 :   return 1;
    1748             : }
    1749             : 
    1750             : /* true nf, x a ZC (primitive for efficiency) which is not a scalar */
    1751             : static int
    1752       80574 : nfchecksigns_i(GEN nf, GEN x, GEN signs, GEN archp)
    1753             : {
    1754       80574 :   long i, np, npc, l = lg(archp), r1 = nf_get_r1(nf);
    1755             :   GEN sarch;
    1756             : 
    1757       80574 :   if (r1 == 0) return 1;
    1758       80181 :   np = num_positive(nf, x);
    1759       80181 :   if (np == 0)  return oksigns(l, signs, 1, 1);
    1760       71102 :   if (np == r1) return oksigns(l, signs, 1, 0);
    1761       55289 :   sarch = nfarchstar(nf, NULL, identity_perm(r1));
    1762       63849 :   for (i = 1, npc = 0; i < l; i++)
    1763             :   {
    1764       63613 :     GEN xi = set_sign_mod_divisor(nf, vecsmall_ei(r1, archp[i]), gen_1, sarch);
    1765             :     long ni, s;
    1766       63613 :     xi = Q_primpart(xi);
    1767       63613 :     ni = num_positive(nf, nfmuli(nf,x,xi));
    1768       63613 :     s = ni < np? 0: 1;
    1769       63613 :     if (s != (signs? signs[i]: 0)) return 0;
    1770       24917 :     if (!s) npc++; /* found a positive root */
    1771       24917 :     if (npc == np)
    1772             :     { /* found all positive roots */
    1773       15763 :       if (!signs) return i == l-1;
    1774        8885 :       for (i++; i < l; i++)
    1775        4232 :         if (signs[i] != 1) return 0;
    1776        4653 :       return 1;
    1777             :     }
    1778        9154 :     if (i - npc == r1 - np)
    1779             :     { /* found all negative roots */
    1780         595 :       if (!signs) return 1;
    1781         637 :       for (i++; i < l; i++)
    1782          49 :         if (signs[i]) return 0;
    1783         588 :       return 1;
    1784             :     }
    1785             :   }
    1786         236 :   return 1;
    1787             : }
    1788             : static void
    1789         985 : pl_convert(GEN pl, GEN *psigns, GEN *parchp)
    1790             : {
    1791         985 :   long i, j, l = lg(pl);
    1792         985 :   GEN signs = cgetg(l, t_VECSMALL);
    1793         985 :   GEN archp = cgetg(l, t_VECSMALL);
    1794        3080 :   for (i = j = 1; i < l; i++)
    1795             :   {
    1796        2095 :     if (!pl[i]) continue;
    1797        1578 :     archp[j] = i;
    1798        1578 :     signs[j] = (pl[i] < 0)? 1: 0;
    1799        1578 :     j++;
    1800             :   }
    1801         985 :   setlg(archp, j); *parchp = archp;
    1802         985 :   setlg(signs, j); *psigns = signs;
    1803         985 : }
    1804             : /* pl : requested signs for real embeddings, 0 = no sign constraint */
    1805             : int
    1806       15111 : nfchecksigns(GEN nf, GEN x, GEN pl)
    1807             : {
    1808       15111 :   pari_sp av = avma;
    1809             :   GEN signs, archp;
    1810       15111 :   nf = checknf(nf);
    1811       15111 :   x = nf_to_scalar_or_basis(nf,x);
    1812       15111 :   if (typ(x) != t_COL)
    1813             :   {
    1814       14126 :     long i, l = lg(pl), s = gsigne(x);
    1815       28259 :     for (i = 1; i < l; i++)
    1816       14133 :       if (pl[i] && pl[i] != s) return gc_bool(av,0);
    1817       14126 :     return gc_bool(av,1);
    1818             :   }
    1819         985 :   pl_convert(pl, &signs, &archp);
    1820         985 :   return gc_bool(av, nfchecksigns_i(nf, x, signs, archp));
    1821             : }
    1822             : 
    1823             : /* signs = NULL: totally positive, else sign[i] = 0 (+) or 1 (-) */
    1824             : static GEN
    1825      608794 : get_C(GEN lambda, long l, GEN signs)
    1826             : {
    1827             :   long i;
    1828             :   GEN C, mlambda;
    1829      608794 :   if (!signs) return const_vec(l-1, lambda);
    1830      579044 :   C = cgetg(l, t_COL); mlambda = gneg(lambda);
    1831     2319684 :   for (i = 1; i < l; i++) gel(C,i) = signs[i]? mlambda: lambda;
    1832      579046 :   return C;
    1833             : }
    1834             : /* signs = NULL: totally positive at archp.
    1835             :  * Assume that a t_COL x is not a scalar */
    1836             : static GEN
    1837      722644 : nfsetsigns(GEN nf, GEN signs, GEN x, GEN sarch)
    1838             : {
    1839      722644 :   long i, l = lg(sarch_get_archp(sarch));
    1840      722643 :   GEN ex = NULL;
    1841             :   /* Is signature already correct ? */
    1842      722643 :   if (typ(x) != t_COL)
    1843             :   {
    1844      643058 :     long s = gsigne(x);
    1845      643059 :     if (!s) i = 1;
    1846      643038 :     else if (!signs)
    1847        7427 :       i = (s < 0)? 1: l;
    1848             :     else
    1849             :     {
    1850      635611 :       s = s < 0? 1: 0;
    1851     1111411 :       for (i = 1; i < l; i++)
    1852     1032660 :         if (signs[i] != s) break;
    1853             :     }
    1854      643059 :     if (i < l) ex = const_col(l-1, x);
    1855             :   }
    1856             :   else
    1857             :   { /* inefficient if x scalar, wrong if x = 0 */
    1858       79585 :     pari_sp av = avma;
    1859       79585 :     GEN cex, M = nf_get_M(nf), archp = sarch_get_archp(sarch);
    1860       79590 :     GEN xp = Q_primitive_part(x,&cex);
    1861       79589 :     if (nfchecksigns_i(nf, xp, signs, archp)) set_avma(av);
    1862             :     else
    1863             :     {
    1864       51772 :       ex = cgetg(l,t_COL);
    1865      126549 :       for (i = 1; i < l; i++) gel(ex,i) = zk_embed(M,xp,archp[i]);
    1866       51773 :       if (cex) ex = RgC_Rg_mul(ex, cex); /* put back content */
    1867             :     }
    1868             :   }
    1869      722645 :   if (ex)
    1870             :   { /* If no, fix it */
    1871      608795 :     GEN MI = sarch_get_MI(sarch), F = sarch_get_F(sarch);
    1872      608794 :     GEN lambda = sarch_get_lambda(sarch);
    1873      608794 :     GEN t = RgC_sub(get_C(lambda, l, signs), ex);
    1874      608783 :     t = grndtoi(RgM_RgC_mul(MI,t), NULL);
    1875      608776 :     if (lg(F) != 1) t = ZM_ZC_mul(F, t);
    1876      608790 :     x = typ(x) == t_COL? RgC_add(t, x): RgC_Rg_add(t, x);
    1877             :   }
    1878      722624 :   return x;
    1879             : }
    1880             : /* - true nf
    1881             :  * - sarch = nfarchstar(nf, F);
    1882             :  * - x encodes a vector of signs at arch.archp: either a t_VECSMALL
    1883             :  *   (vector of signs as {0,1}-vector), NULL (totally positive at archp),
    1884             :  *   or a nonzero number field element (replaced by its signature at archp);
    1885             :  * - y is a nonzero number field element
    1886             :  * Return z = y (mod F) with signs(y, archp) = signs(x) (a {0,1}-vector).
    1887             :  * Not stack-clean */
    1888             : GEN
    1889      753905 : set_sign_mod_divisor(GEN nf, GEN x, GEN y, GEN sarch)
    1890             : {
    1891      753905 :   GEN archp = sarch_get_archp(sarch);
    1892      753903 :   if (lg(archp) == 1) return y;
    1893      720597 :   if (x && typ(x) != t_VECSMALL) x = nfsign_arch(nf, x, archp);
    1894      720597 :   return nfsetsigns(nf, x, nf_to_scalar_or_basis(nf,y), sarch);
    1895             : }
    1896             : 
    1897             : static GEN
    1898      392075 : setsigns_init(GEN nf, GEN archp, GEN F, GEN DATA)
    1899             : {
    1900      392075 :   GEN lambda, Mr = rowpermute(nf_get_M(nf), archp), MI = F? RgM_mul(Mr,F): Mr;
    1901      392081 :   lambda = gmul2n(matrixnorm(MI,DEFAULTPREC), -1);
    1902      392079 :   if (typ(lambda) != t_REAL) lambda = gmul(lambda, uutoQ(1001,1000));
    1903      392078 :   if (lg(archp) < lg(MI))
    1904             :   {
    1905       75705 :     GEN perm = gel(indexrank(MI), 2);
    1906       75707 :     if (!F) F = matid(nf_get_degree(nf));
    1907       75707 :     MI = vecpermute(MI, perm);
    1908       75706 :     F = vecpermute(F, perm);
    1909             :   }
    1910      392081 :   if (!F) F = cgetg(1,t_MAT);
    1911      392081 :   MI = RgM_inv(MI);
    1912      392081 :   return mkvec5(DATA, archp, MI, lambda, F);
    1913             : }
    1914             : /* F nonzero integral ideal in HNF (or NULL: Z_K), compute elements in 1+F
    1915             :  * whose sign matrix at archp is identity; archp in 'indices' format */
    1916             : GEN
    1917      567890 : nfarchstar(GEN nf, GEN F, GEN archp)
    1918             : {
    1919      567890 :   long nba = lg(archp) - 1;
    1920      567890 :   if (!nba) return mkvec2(cgetg(1,t_VEC), archp);
    1921      390029 :   if (F && equali1(gcoeff(F,1,1))) F = NULL;
    1922      390029 :   if (F) F = idealpseudored(F, nf_get_roundG(nf));
    1923      390025 :   return setsigns_init(nf, archp, F, const_vec(nba, gen_2));
    1924             : }
    1925             : 
    1926             : /*************************************************************************/
    1927             : /**                                                                     **/
    1928             : /**                         IDEALCHINESE                                **/
    1929             : /**                                                                     **/
    1930             : /*************************************************************************/
    1931             : static int
    1932        5305 : isprfact(GEN x)
    1933             : {
    1934             :   long i, l;
    1935             :   GEN L, E;
    1936        5305 :   if (typ(x) != t_MAT || lg(x) != 3) return 0;
    1937        5305 :   L = gel(x,1); l = lg(L);
    1938        5305 :   E = gel(x,2);
    1939       16632 :   for(i=1; i<l; i++)
    1940             :   {
    1941       11327 :     checkprid(gel(L,i));
    1942       11327 :     if (typ(gel(E,i)) != t_INT) return 0;
    1943             :   }
    1944        5305 :   return 1;
    1945             : }
    1946             : 
    1947             : /* initialize projectors mod pr[i]^e[i] for idealchinese */
    1948             : static GEN
    1949        5305 : pr_init(GEN nf, GEN fa, GEN w, GEN dw)
    1950             : {
    1951        5305 :   GEN U, E, F, FZ, L = gel(fa,1), E0 = gel(fa,2);
    1952        5305 :   long i, r = lg(L);
    1953             : 
    1954        5305 :   if (w && lg(w) != r) pari_err_TYPE("idealchinese", w);
    1955        5305 :   if (r == 1 && !dw) return cgetg(1,t_VEC);
    1956        5291 :   E = leafcopy(E0); /* do not destroy fa[2] */
    1957       16618 :   for (i = 1; i < r; i++)
    1958       11327 :     if (signe(gel(E,i)) < 0) gel(E,i) = gen_0;
    1959        5291 :   F = factorbackprime(nf, L, E);
    1960        5291 :   if (dw)
    1961             :   {
    1962         693 :     F = ZM_Z_mul(F, dw);
    1963        1596 :     for (i = 1; i < r; i++)
    1964             :     {
    1965         903 :       GEN pr = gel(L,i);
    1966         903 :       long e = itos(gel(E0,i)), v = idealval(nf, dw, pr);
    1967         903 :       if (e >= 0)
    1968         896 :         gel(E,i) = addiu(gel(E,i), v);
    1969           7 :       else if (v + e <= 0)
    1970           0 :         F = idealmulpowprime(nf, F, pr, stoi(-v)); /* coprime to pr */
    1971             :       else
    1972             :       {
    1973           7 :         F = idealmulpowprime(nf, F, pr, stoi(e));
    1974           7 :         gel(E,i) = stoi(v + e);
    1975             :       }
    1976             :     }
    1977             :   }
    1978        5291 :   U = cgetg(r, t_VEC);
    1979       16618 :   for (i = 1; i < r; i++)
    1980             :   {
    1981             :     GEN u;
    1982       11327 :     if (w && gequal0(gel(w,i))) u = gen_0; /* unused */
    1983             :     else
    1984             :     {
    1985       11250 :       GEN pr = gel(L,i), e = gel(E,i), t;
    1986       11250 :       t = idealdivpowprime(nf,F, pr, e);
    1987       11250 :       u = hnfmerge_get_1(t, idealpow(nf, pr, e));
    1988       11250 :       if (!u) pari_err_COPRIME("idealchinese", t,pr);
    1989             :     }
    1990       11327 :     gel(U,i) = u;
    1991             :   }
    1992        5291 :   FZ = gcoeff(F, 1, 1);
    1993        5291 :   F = idealpseudored(F, nf_get_roundG(nf));
    1994        5291 :   return mkvec2(mkvec2(F, FZ), U);
    1995             : }
    1996             : 
    1997             : static GEN
    1998        2660 : pl_normalize(GEN nf, GEN pl)
    1999             : {
    2000        2660 :   const char *fun = "idealchinese";
    2001        2660 :   if (lg(pl)-1 != nf_get_r1(nf)) pari_err_TYPE(fun,pl);
    2002        2660 :   switch(typ(pl))
    2003             :   {
    2004         707 :     case t_VEC: RgV_check_ZV(pl,fun); pl = ZV_to_zv(pl);
    2005             :       /* fall through */
    2006        2660 :     case t_VECSMALL: break;
    2007           0 :     default: pari_err_TYPE(fun,pl);
    2008             :   }
    2009        2660 :   return pl;
    2010             : }
    2011             : 
    2012             : static int
    2013       11445 : is_chineseinit(GEN x)
    2014             : {
    2015             :   GEN fa, pl;
    2016             :   long l;
    2017       11445 :   if (typ(x) != t_VEC || lg(x)!=3) return 0;
    2018        9219 :   fa = gel(x,1);
    2019        9219 :   pl = gel(x,2);
    2020        9219 :   if (typ(fa) != t_VEC || typ(pl) != t_VEC) return 0;
    2021        5411 :   l = lg(fa);
    2022        5411 :   if (l != 1)
    2023             :   {
    2024             :     GEN z;
    2025        5369 :     if (l != 3) return 0;
    2026        5369 :     z = gel(fa, 1);
    2027        5369 :     if (typ(z) != t_VEC || lg(z) != 3 || typ(gel(z,1)) != t_MAT
    2028        5362 :                         || typ(gel(z,2)) != t_INT
    2029        5362 :                         || typ(gel(fa,2)) != t_VEC)
    2030           7 :       return 0;
    2031             :   }
    2032        5404 :   l = lg(pl);
    2033        5404 :   if (l != 1)
    2034             :   {
    2035         931 :     if (l != 6 || typ(gel(pl,3)) != t_MAT || typ(gel(pl,1)) != t_VECSMALL
    2036         931 :                                           || typ(gel(pl,2)) != t_VECSMALL)
    2037           0 :       return 0;
    2038             :   }
    2039        5404 :   return 1;
    2040             : }
    2041             : 
    2042             : /* nf a true 'nf' */
    2043             : static GEN
    2044        5774 : chineseinit_i(GEN nf, GEN fa, GEN w, GEN dw)
    2045             : {
    2046        5774 :   const char *fun = "idealchineseinit";
    2047        5774 :   GEN archp = NULL, pl = NULL;
    2048        5774 :   switch(typ(fa))
    2049             :   {
    2050        2660 :     case t_VEC:
    2051        2660 :       if (is_chineseinit(fa))
    2052             :       {
    2053           0 :         if (dw) pari_err_DOMAIN(fun, "denom(y)", "!=", gen_1, w);
    2054           0 :         return fa;
    2055             :       }
    2056        2660 :       if (lg(fa) != 3) pari_err_TYPE(fun, fa);
    2057             :       /* of the form [x,s] */
    2058        2660 :       pl = pl_normalize(nf, gel(fa,2));
    2059        2660 :       fa = gel(fa,1);
    2060        2660 :       archp = vecsmall01_to_indices(pl);
    2061             :       /* keep pr_init, reset pl */
    2062        2660 :       if (is_chineseinit(fa)) { fa = gel(fa,1); break; }
    2063             :       /* fall through */
    2064             :     case t_MAT: /* factorization? */
    2065        5305 :       if (isprfact(fa)) { fa = pr_init(nf, fa, w, dw); break; }
    2066           0 :     default: pari_err_TYPE(fun,fa);
    2067             :   }
    2068             : 
    2069        5774 :   if (!pl) pl = cgetg(1,t_VEC);
    2070             :   else
    2071             :   {
    2072        2660 :     long r = lg(archp);
    2073        2660 :     if (r == 1) pl = cgetg(1, t_VEC);
    2074             :     else
    2075             :     {
    2076        2037 :       GEN F = (lg(fa) == 1)? NULL: gmael(fa,1,1), signs = cgetg(r, t_VECSMALL);
    2077             :       long i;
    2078        5733 :       for (i = 1; i < r; i++) signs[i] = (pl[archp[i]] < 0)? 1: 0;
    2079        2037 :       pl = setsigns_init(nf, archp, F, signs);
    2080             :     }
    2081             :   }
    2082        5774 :   return mkvec2(fa, pl);
    2083             : }
    2084             : 
    2085             : /* Given a prime ideal factorization x, possibly with 0 or negative exponents,
    2086             :  * and a vector w of elements of nf, gives b such that
    2087             :  * v_p(b-w_p)>=v_p(x) for all prime ideals p in the ideal factorization
    2088             :  * and v_p(b)>=0 for all other p, using the standard proof given in GTM 138. */
    2089             : GEN
    2090       10709 : idealchinese(GEN nf, GEN x0, GEN w)
    2091             : {
    2092       10709 :   const char *fun = "idealchinese";
    2093       10709 :   pari_sp av = avma;
    2094       10709 :   GEN x = x0, x1, x2, s, dw, F;
    2095             : 
    2096       10709 :   nf = checknf(nf);
    2097       10709 :   if (!w) return gerepilecopy(av, chineseinit_i(nf,x,NULL,NULL));
    2098             : 
    2099        6125 :   if (typ(w) != t_VEC) pari_err_TYPE(fun,w);
    2100        6125 :   w = Q_remove_denom(matalgtobasis(nf,w), &dw);
    2101        6125 :   if (!is_chineseinit(x)) x = chineseinit_i(nf,x,w,dw);
    2102             :   /* x is a 'chineseinit' */
    2103        6125 :   x1 = gel(x,1); s = NULL;
    2104        6125 :   x2 = gel(x,2);
    2105        6125 :   if (lg(x1) == 1) { F = NULL; dw = NULL; }
    2106             :   else
    2107             :   {
    2108        6083 :     GEN  U = gel(x1,2), FZ;
    2109        6083 :     long i, r = lg(w);
    2110        6083 :     F = gmael(x1,1,1); FZ = gmael(x1,1,2);
    2111       20571 :     for (i=1; i<r; i++)
    2112       14488 :       if (!ZV_equal0(gel(w,i)))
    2113             :       {
    2114       10984 :         GEN t = nfmuli(nf, gel(U,i), gel(w,i));
    2115       10984 :         s = s? ZC_add(s,t): t;
    2116             :       }
    2117        6083 :     if (s)
    2118             :     {
    2119        6062 :       s = ZC_reducemodmatrix(s, F);
    2120        6062 :       if (dw && x == x0) /* input was a chineseinit */
    2121             :       {
    2122           7 :         dw = modii(dw, FZ);
    2123           7 :         s = FpC_Fp_mul(s, Fp_inv(dw, FZ), FZ);
    2124           7 :         dw = NULL;
    2125             :       }
    2126        6062 :       if (ZV_isscalar(s)) s = icopy(gel(s,1));
    2127             :     }
    2128             :   }
    2129        6125 :   if (lg(x2) != 1)
    2130             :   {
    2131        2044 :     s = nfsetsigns(nf, gel(x2,1), s? s: gen_0, x2);
    2132        2044 :     if (typ(s) == t_COL && QV_isscalar(s))
    2133             :     {
    2134         371 :       s = gel(s,1); if (!dw) s = gcopy(s);
    2135             :     }
    2136             :   }
    2137        4081 :   else if (!s) return gc_const(av, gen_0);
    2138        6076 :   return gerepileupto(av, dw? gdiv(s, dw): s);
    2139             : }
    2140             : 
    2141             : /*************************************************************************/
    2142             : /**                                                                     **/
    2143             : /**                           (Z_K/I)^*                                 **/
    2144             : /**                                                                     **/
    2145             : /*************************************************************************/
    2146             : GEN
    2147        2660 : vecsmall01_to_indices(GEN v)
    2148             : {
    2149        2660 :   long i, k, l = lg(v);
    2150        2660 :   GEN p = new_chunk(l) + l;
    2151        7567 :   for (k=1, i=l-1; i; i--)
    2152        4907 :     if (v[i]) { *--p = i; k++; }
    2153        2660 :   *--p = _evallg(k) | evaltyp(t_VECSMALL);
    2154        2660 :   set_avma((pari_sp)p); return p;
    2155             : }
    2156             : GEN
    2157     1094145 : vec01_to_indices(GEN v)
    2158             : {
    2159             :   long i, k, l;
    2160             :   GEN p;
    2161             : 
    2162     1094145 :   switch (typ(v))
    2163             :   {
    2164     1047385 :    case t_VECSMALL: return v;
    2165       46760 :    case t_VEC: break;
    2166           0 :    default: pari_err_TYPE("vec01_to_indices",v);
    2167             :   }
    2168       46760 :   l = lg(v);
    2169       46760 :   p = new_chunk(l) + l;
    2170      140588 :   for (k=1, i=l-1; i; i--)
    2171       93828 :     if (signe(gel(v,i))) { *--p = i; k++; }
    2172       46760 :   *--p = _evallg(k) | evaltyp(t_VECSMALL);
    2173       46760 :   set_avma((pari_sp)p); return p;
    2174             : }
    2175             : GEN
    2176      136893 : indices_to_vec01(GEN p, long r)
    2177             : {
    2178      136893 :   long i, l = lg(p);
    2179      136893 :   GEN v = zerovec(r);
    2180      206628 :   for (i = 1; i < l; i++) gel(v, p[i]) = gen_1;
    2181      136891 :   return v;
    2182             : }
    2183             : 
    2184             : /* return (column) vector of R1 signatures of x (0 or 1) */
    2185             : GEN
    2186     1047384 : nfsign_arch(GEN nf, GEN x, GEN arch)
    2187             : {
    2188     1047384 :   GEN sarch, V, archp = vec01_to_indices(arch);
    2189     1047385 :   long i, s, np, npc, r1, n = lg(archp)-1;
    2190             :   pari_sp av;
    2191             : 
    2192     1047385 :   if (!n) return cgetg(1,t_VECSMALL);
    2193      845244 :   if (typ(x) == t_MAT)
    2194             :   { /* factorisation */
    2195      276330 :     GEN g = gel(x,1), e = gel(x,2);
    2196      276330 :     long l = lg(g);
    2197      276330 :     V = zero_zv(n);
    2198      832042 :     for (i = 1; i < l; i++)
    2199      555715 :       if (mpodd(gel(e,i)))
    2200      436095 :         Flv_add_inplace(V, nfsign_arch(nf,gel(g,i),archp), 2);
    2201      276327 :     set_avma((pari_sp)V); return V;
    2202             :   }
    2203      568914 :   av = avma; V = cgetg(n+1,t_VECSMALL);
    2204      568912 :   x = nf_to_scalar_or_basis(nf, x);
    2205      568913 :   switch(typ(x))
    2206             :   {
    2207      183586 :     case t_INT:
    2208      183586 :       s = signe(x);
    2209      183586 :       if (!s) pari_err_DOMAIN("nfsign_arch","element","=",gen_0,x);
    2210      183586 :       set_avma(av); return const_vecsmall(n, (s < 0)? 1: 0);
    2211         644 :     case t_FRAC:
    2212         644 :       s = signe(gel(x,1));
    2213         644 :       set_avma(av); return const_vecsmall(n, (s < 0)? 1: 0);
    2214             :   }
    2215      384683 :   r1 = nf_get_r1(nf); x = Q_primpart(x); np = num_positive(nf, x);
    2216      384681 :   if (np == 0) { set_avma(av); return const_vecsmall(n, 1); }
    2217      338120 :   if (np == r1){ set_avma(av); return const_vecsmall(n, 0); }
    2218      253472 :   sarch = nfarchstar(nf, NULL, identity_perm(r1));
    2219      382177 :   for (i = 1, npc = 0; i <= n; i++)
    2220             :   {
    2221      381839 :     GEN xi = set_sign_mod_divisor(nf, vecsmall_ei(r1, archp[i]), gen_1, sarch);
    2222             :     long ni;
    2223      381839 :     xi = Q_primpart(xi);
    2224      381839 :     ni = num_positive(nf, nfmuli(nf,x,xi));
    2225      381838 :     V[i] = ni < np? 0: 1;
    2226      381838 :     if (!V[i]) npc++; /* found a positive root */
    2227      381838 :     if (npc == np)
    2228             :     { /* found all positive roots */
    2229      251444 :       for (i++; i <= n; i++) V[i] = 1;
    2230      136571 :       break;
    2231             :     }
    2232      245267 :     if (i - npc == r1 - np)
    2233             :     { /* found all negative roots */
    2234      181842 :       for (i++; i <= n; i++) V[i] = 0;
    2235      116564 :       break;
    2236             :     }
    2237             :   }
    2238      253473 :   set_avma((pari_sp)V); return V;
    2239             : }
    2240             : static void
    2241       36246 : chk_ind(const char *s, long i, long r1)
    2242             : {
    2243       36246 :   if (i <= 0) pari_err_DOMAIN(s, "index", "<=", gen_0, stoi(i));
    2244       36232 :   if (i > r1) pari_err_DOMAIN(s, "index", ">", utoi(r1), utoi(i));
    2245       36197 : }
    2246             : static GEN
    2247      128226 : parse_embed(GEN ind, long r, const char *f)
    2248             : {
    2249             :   long l, i;
    2250      128226 :   if (!ind) return identity_perm(r);
    2251       34111 :   switch(typ(ind))
    2252             :   {
    2253          70 :     case t_INT: ind = mkvecsmall(itos(ind)); break;
    2254          84 :     case t_VEC: case t_COL: ind = vec_to_vecsmall(ind); break;
    2255       33957 :     case t_VECSMALL: break;
    2256           0 :     default: pari_err_TYPE(f, ind);
    2257             :   }
    2258       34111 :   l = lg(ind);
    2259       70308 :   for (i = 1; i < l; i++) chk_ind(f, ind[i], r);
    2260       34062 :   return ind;
    2261             : }
    2262             : GEN
    2263      125601 : nfeltsign(GEN nf, GEN x, GEN ind0)
    2264             : {
    2265      125601 :   pari_sp av = avma;
    2266             :   long i, l;
    2267             :   GEN v, ind;
    2268      125601 :   nf = checknf(nf);
    2269      125601 :   ind = parse_embed(ind0, nf_get_r1(nf), "nfeltsign");
    2270      125580 :   l = lg(ind);
    2271      125580 :   if (is_rational_t(typ(x)))
    2272             :   { /* nfsign_arch would test this, but avoid converting t_VECSMALL -> t_VEC */
    2273             :     GEN s;
    2274       31486 :     switch(gsigne(x))
    2275             :     {
    2276       16513 :       case -1:s = gen_m1; break;
    2277       14966 :       case 1: s = gen_1; break;
    2278           7 :       default: s = gen_0; break;
    2279             :     }
    2280       31486 :     set_avma(av);
    2281       31486 :     return (ind0 && typ(ind0) == t_INT)? s: const_vec(l-1, s);
    2282             :   }
    2283       94094 :   v = nfsign_arch(nf, x, ind);
    2284       94094 :   if (ind0 && typ(ind0) == t_INT) { set_avma(av); return v[1]? gen_m1: gen_1; }
    2285       94080 :   settyp(v, t_VEC);
    2286      263928 :   for (i = 1; i < l; i++) gel(v,i) = v[i]? gen_m1: gen_1;
    2287       94080 :   return gerepileupto(av, v);
    2288             : }
    2289             : 
    2290             : /* true nf */
    2291             : GEN
    2292         728 : nfeltembed_i(GEN *pnf, GEN x, GEN ind0, long prec0)
    2293             : {
    2294             :   long i, e, l, r1, r2, prec, prec1;
    2295         728 :   GEN v, ind, cx, nf = *pnf;
    2296         728 :   nf_get_sign(nf,&r1,&r2);
    2297         728 :   x = nf_to_scalar_or_basis(nf, x);
    2298         721 :   ind = parse_embed(ind0, r1+r2, "nfeltembed");
    2299         714 :   l = lg(ind);
    2300         714 :   if (typ(x) != t_COL)
    2301             :   {
    2302         224 :     if (!(ind0 && typ(ind0) == t_INT)) x = const_vec(l-1, x);
    2303         224 :     return x;
    2304             :   }
    2305         490 :   x = Q_primitive_part(x, &cx);
    2306         490 :   prec1 = prec0; e = gexpo(x);
    2307         490 :   if (e > 8) prec1 += nbits2extraprec(e);
    2308         490 :   prec = prec1;
    2309         490 :   if (nf_get_prec(nf) < prec) nf = nfnewprec_shallow(nf, prec);
    2310         490 :   v = cgetg(l, t_VEC);
    2311             :   for(;;)
    2312         138 :   {
    2313         628 :     GEN M = nf_get_M(nf);
    2314        2630 :     for (i = 1; i < l; i++)
    2315             :     {
    2316        2140 :       GEN t = nfembed_i(M, x, ind[i]);
    2317        2140 :       long e = gexpo(t);
    2318        2140 :       if (gequal0(t) || precision(t) < prec0
    2319        2140 :                      || (e < 0 && prec < prec1 + nbits2extraprec(-e)) ) break;
    2320        2002 :       if (cx) t = gmul(t, cx);
    2321        2002 :       gel(v,i) = t;
    2322             :     }
    2323         628 :     if (i == l) break;
    2324         138 :     prec = precdbl(prec);
    2325         138 :     if (DEBUGLEVEL>1) pari_warn(warnprec,"eltnfembed", prec);
    2326         138 :     *pnf = nf = nfnewprec_shallow(nf, prec);
    2327             :   }
    2328         490 :   if (ind0 && typ(ind0) == t_INT) v = gel(v,1);
    2329         490 :   return v;
    2330             : }
    2331             : GEN
    2332         728 : nfeltembed(GEN nf, GEN x, GEN ind0, long prec0)
    2333             : {
    2334         728 :   pari_sp av = avma; nf = checknf(nf);
    2335         728 :   return gerepilecopy(av, nfeltembed_i(&nf, x, ind0, prec0));
    2336             : }
    2337             : 
    2338             : /* number of distinct roots of sigma(f) */
    2339             : GEN
    2340        1904 : nfpolsturm(GEN nf, GEN f, GEN ind0)
    2341             : {
    2342        1904 :   pari_sp av = avma;
    2343             :   long d, l, r1, single;
    2344             :   GEN ind, u, v, vr1, T, s, t;
    2345             : 
    2346        1904 :   nf = checknf(nf); T = nf_get_pol(nf); r1 = nf_get_r1(nf);
    2347        1904 :   ind = parse_embed(ind0, r1, "nfpolsturm");
    2348        1883 :   single = ind0 && typ(ind0) == t_INT;
    2349        1883 :   l = lg(ind);
    2350             : 
    2351        1883 :   if (gequal0(f)) pari_err_ROOTS0("nfpolsturm");
    2352        1876 :   if (typ(f) == t_POL && varn(f) != varn(T))
    2353             :   {
    2354        1855 :     f = RgX_nffix("nfpolsturm", T, f,1);
    2355        1855 :     if (lg(f) == 3) f = NULL;
    2356             :   }
    2357             :   else
    2358             :   {
    2359          21 :     (void)Rg_nffix("nfpolsturm", T, f, 0);
    2360          21 :     f = NULL;
    2361             :   }
    2362        1876 :   if (!f) { set_avma(av); return single? gen_0: zerovec(l-1); }
    2363        1855 :   d = degpol(f);
    2364        1855 :   if (d == 1) { set_avma(av); return single? gen_1: const_vec(l-1,gen_1); }
    2365             : 
    2366        1785 :   vr1 = const_vecsmall(l-1, 1);
    2367        1785 :   u = Q_primpart(f); s = ZV_to_zv(nfeltsign(nf, gel(u,d+2), ind));
    2368        1785 :   v = RgX_deriv(u); t = odd(d)? leafcopy(s): zv_neg(s);
    2369             :   for(;;)
    2370         245 :   {
    2371        2030 :     GEN r = RgX_neg( Q_primpart(RgX_pseudorem(u, v)) ), sr;
    2372        2030 :     long i, dr = degpol(r);
    2373        2030 :     if (dr < 0) break;
    2374        2030 :     sr = ZV_to_zv(nfeltsign(nf, gel(r,dr+2), ind));
    2375        4865 :     for (i = 1; i < l; i++)
    2376        2835 :       if (sr[i] != s[i]) { s[i] = sr[i], vr1[i]--; }
    2377        2030 :     if (odd(dr)) sr = zv_neg(sr);
    2378        4865 :     for (i = 1; i < l; i++)
    2379        2835 :       if (sr[i] != t[i]) { t[i] = sr[i], vr1[i]++; }
    2380        2030 :     if (!dr) break;
    2381         245 :     u = v; v = r;
    2382             :   }
    2383        1785 :   if (single) return gc_stoi(av,vr1[1]);
    2384        1778 :   return gerepileupto(av, zv_to_ZV(vr1));
    2385             : }
    2386             : 
    2387             : /* True nf; return the vector of signs of x; the matrix of such if x is a vector
    2388             :  * of nf elements */
    2389             : GEN
    2390       44170 : nfsign(GEN nf, GEN x)
    2391             : {
    2392             :   long i, l;
    2393             :   GEN archp, S;
    2394             : 
    2395       44170 :   archp = identity_perm( nf_get_r1(nf) );
    2396       44170 :   if (typ(x) != t_VEC) return nfsign_arch(nf, x, archp);
    2397       35945 :   l = lg(x); S = cgetg(l, t_MAT);
    2398      148111 :   for (i=1; i<l; i++) gel(S,i) = nfsign_arch(nf, gel(x,i), archp);
    2399       35944 :   return S;
    2400             : }
    2401             : 
    2402             : /* x integral elt, A integral ideal in HNF; reduce x mod A */
    2403             : static GEN
    2404     7818594 : zk_modHNF(GEN x, GEN A)
    2405     7818594 : { return (typ(x) == t_COL)?  ZC_hnfrem(x, A): modii(x, gcoeff(A,1,1)); }
    2406             : 
    2407             : /* given an element x in Z_K and an integral ideal y in HNF, coprime with x,
    2408             :    outputs an element inverse of x modulo y */
    2409             : GEN
    2410         189 : nfinvmodideal(GEN nf, GEN x, GEN y)
    2411             : {
    2412         189 :   pari_sp av = avma;
    2413         189 :   GEN a, yZ = gcoeff(y,1,1);
    2414             : 
    2415         189 :   if (equali1(yZ)) return gen_0;
    2416         189 :   x = nf_to_scalar_or_basis(nf, x);
    2417         189 :   if (typ(x) == t_INT) return gerepileupto(av, Fp_inv(x, yZ));
    2418             : 
    2419          79 :   a = hnfmerge_get_1(idealhnf_principal(nf,x), y);
    2420          79 :   if (!a) pari_err_INV("nfinvmodideal", x);
    2421          79 :   return gerepileupto(av, zk_modHNF(nfdiv(nf,a,x), y));
    2422             : }
    2423             : 
    2424             : static GEN
    2425     2688954 : nfsqrmodideal(GEN nf, GEN x, GEN id)
    2426     2688954 : { return zk_modHNF(nfsqri(nf,x), id); }
    2427             : static GEN
    2428     7292553 : nfmulmodideal(GEN nf, GEN x, GEN y, GEN id)
    2429     7292553 : { return x? zk_modHNF(nfmuli(nf,x,y), id): y; }
    2430             : /* assume x integral, k integer, A in HNF */
    2431             : GEN
    2432     5846476 : nfpowmodideal(GEN nf,GEN x,GEN k,GEN A)
    2433             : {
    2434     5846476 :   long s = signe(k);
    2435             :   pari_sp av;
    2436             :   GEN y;
    2437             : 
    2438     5846476 :   if (!s) return gen_1;
    2439     5846476 :   av = avma;
    2440     5846476 :   x = nf_to_scalar_or_basis(nf, x);
    2441     5846657 :   if (typ(x) != t_COL) return Fp_pow(x, k, gcoeff(A,1,1));
    2442     2628304 :   if (s < 0) { k = negi(k); x = nfinvmodideal(nf, x,A); }
    2443     2628304 :   if (equali1(k)) return gerepileupto(av, s > 0? zk_modHNF(x, A): x);
    2444     1150523 :   for(y = NULL;;)
    2445             :   {
    2446     3839564 :     if (mpodd(k)) y = nfmulmodideal(nf,y,x,A);
    2447     3839539 :     k = shifti(k,-1); if (!signe(k)) break;
    2448     2688633 :     x = nfsqrmodideal(nf,x,A);
    2449             :   }
    2450     1150513 :   return gerepileupto(av, y);
    2451             : }
    2452             : 
    2453             : /* a * g^n mod id */
    2454             : static GEN
    2455     4695149 : nfmulpowmodideal(GEN nf, GEN a, GEN g, GEN n, GEN id)
    2456             : {
    2457     4695149 :   return nfmulmodideal(nf, a, nfpowmodideal(nf,g,n,id), id);
    2458             : }
    2459             : 
    2460             : /* assume (num(g[i]), id) = 1 for all i. Return prod g[i]^e[i] mod id.
    2461             :  * EX = multiple of exponent of (O_K/id)^* */
    2462             : GEN
    2463     2622388 : famat_to_nf_modideal_coprime(GEN nf, GEN g, GEN e, GEN id, GEN EX)
    2464             : {
    2465     2622388 :   GEN EXo2, plus = NULL, minus = NULL, idZ = gcoeff(id,1,1);
    2466     2622388 :   long i, lx = lg(g);
    2467             : 
    2468     2622388 :   if (equali1(idZ)) return gen_1; /* id = Z_K */
    2469     2621888 :   EXo2 = (expi(EX) > 10)? shifti(EX,-1): NULL;
    2470     8334376 :   for (i = 1; i < lx; i++)
    2471             :   {
    2472     5712553 :     GEN h, n = centermodii(gel(e,i), EX, EXo2);
    2473     5712059 :     long sn = signe(n);
    2474     5712059 :     if (!sn) continue;
    2475             : 
    2476     4041984 :     h = nf_to_scalar_or_basis(nf, gel(g,i));
    2477     4042420 :     switch(typ(h))
    2478             :     {
    2479     2384413 :       case t_INT: break;
    2480           0 :       case t_FRAC:
    2481           0 :         h = Fp_div(gel(h,1), gel(h,2), idZ); break;
    2482     1658007 :       default:
    2483             :       {
    2484             :         GEN dh;
    2485     1658007 :         h = Q_remove_denom(h, &dh);
    2486     1658159 :         if (dh) h = FpC_Fp_mul(h, Fp_inv(dh,idZ), idZ);
    2487             :       }
    2488             :     }
    2489     4042484 :     if (sn > 0)
    2490     4040641 :       plus = nfmulpowmodideal(nf, plus, h, n, id);
    2491             :     else /* sn < 0 */
    2492        1843 :       minus = nfmulpowmodideal(nf, minus, h, negi(n), id);
    2493             :   }
    2494     2621823 :   if (minus) plus = nfmulmodideal(nf, plus, nfinvmodideal(nf,minus,id), id);
    2495     2621913 :   return plus? plus: gen_1;
    2496             : }
    2497             : 
    2498             : /* given 2 integral ideals x, y in HNF s.t x | y | x^2, compute (1+x)/(1+y) in
    2499             :  * the form [[cyc],[gen], U], where U := ux^-1 as a pair [ZM, denom(U)] */
    2500             : static GEN
    2501      237214 : zidealij(GEN x, GEN y)
    2502             : {
    2503      237214 :   GEN U, G, cyc, xp = gcoeff(x,1,1), xi = hnf_invscale(x, xp);
    2504             :   long j, N;
    2505             : 
    2506             :   /* x^(-1) y = relations between the 1 + x_i (HNF) */
    2507      237209 :   cyc = ZM_snf_group(ZM_Z_divexact(ZM_mul(xi, y), xp), &U, &G);
    2508      237203 :   N = lg(cyc); G = ZM_mul(x,G); settyp(G, t_VEC); /* new generators */
    2509      574577 :   for (j=1; j<N; j++)
    2510             :   {
    2511      337390 :     GEN c = gel(G,j);
    2512      337390 :     gel(c,1) = addiu(gel(c,1), 1); /* 1 + g_j */
    2513      337381 :     if (ZV_isscalar(c)) gel(G,j) = gel(c,1);
    2514             :   }
    2515      237187 :   return mkvec4(cyc, G, ZM_mul(U,xi), xp);
    2516             : }
    2517             : 
    2518             : /* lg(x) > 1, x + 1; shallow */
    2519             : static GEN
    2520      169774 : ZC_add1(GEN x)
    2521             : {
    2522      169774 :   long i, l = lg(x);
    2523      169774 :   GEN y = cgetg(l, t_COL);
    2524      396507 :   for (i = 2; i < l; i++) gel(y,i) = gel(x,i);
    2525      169775 :   gel(y,1) = addiu(gel(x,1), 1); return y;
    2526             : }
    2527             : /* lg(x) > 1, x - 1; shallow */
    2528             : static GEN
    2529       70486 : ZC_sub1(GEN x)
    2530             : {
    2531       70486 :   long i, l = lg(x);
    2532       70486 :   GEN y = cgetg(l, t_COL);
    2533      176903 :   for (i = 2; i < l; i++) gel(y,i) = gel(x,i);
    2534       70486 :   gel(y,1) = subiu(gel(x,1), 1); return y;
    2535             : }
    2536             : 
    2537             : /* x,y are t_INT or ZC */
    2538             : static GEN
    2539           0 : zkadd(GEN x, GEN y)
    2540             : {
    2541           0 :   long tx = typ(x);
    2542           0 :   if (tx == typ(y))
    2543           0 :     return tx == t_INT? addii(x,y): ZC_add(x,y);
    2544             :   else
    2545           0 :     return tx == t_INT? ZC_Z_add(y,x): ZC_Z_add(x,y);
    2546             : }
    2547             : /* x a t_INT or ZC, x+1; shallow */
    2548             : static GEN
    2549      255420 : zkadd1(GEN x)
    2550             : {
    2551      255420 :   long tx = typ(x);
    2552      255420 :   return tx == t_INT? addiu(x,1): ZC_add1(x);
    2553             : }
    2554             : /* x a t_INT or ZC, x-1; shallow */
    2555             : static GEN
    2556      255475 : zksub1(GEN x)
    2557             : {
    2558      255475 :   long tx = typ(x);
    2559      255475 :   return tx == t_INT? subiu(x,1): ZC_sub1(x);
    2560             : }
    2561             : /* x,y are t_INT or ZC; x - y */
    2562             : static GEN
    2563           0 : zksub(GEN x, GEN y)
    2564             : {
    2565           0 :   long tx = typ(x), ty = typ(y);
    2566           0 :   if (tx == ty)
    2567           0 :     return tx == t_INT? subii(x,y): ZC_sub(x,y);
    2568             :   else
    2569           0 :     return tx == t_INT? Z_ZC_sub(x,y): ZC_Z_sub(x,y);
    2570             : }
    2571             : /* x is t_INT or ZM (mult. map), y is t_INT or ZC; x * y */
    2572             : static GEN
    2573      255449 : zkmul(GEN x, GEN y)
    2574             : {
    2575      255449 :   long tx = typ(x), ty = typ(y);
    2576      255449 :   if (ty == t_INT)
    2577      184985 :     return tx == t_INT? mulii(x,y): ZC_Z_mul(gel(x,1),y);
    2578             :   else
    2579       70464 :     return tx == t_INT? ZC_Z_mul(y,x): ZM_ZC_mul(x,y);
    2580             : }
    2581             : 
    2582             : /* (U,V) = 1 coprime ideals. Want z = x mod U, = y mod V; namely
    2583             :  * z =vx + uy = v(x-y) + y, where u + v = 1, u in U, v in V.
    2584             :  * zkc = [v, UV], v a t_INT or ZM (mult. by v map), UV a ZM (ideal in HNF);
    2585             :  * shallow */
    2586             : GEN
    2587           0 : zkchinese(GEN zkc, GEN x, GEN y)
    2588             : {
    2589           0 :   GEN v = gel(zkc,1), UV = gel(zkc,2), z = zkadd(zkmul(v, zksub(x,y)), y);
    2590           0 :   return zk_modHNF(z, UV);
    2591             : }
    2592             : /* special case z = x mod U, = 1 mod V; shallow */
    2593             : GEN
    2594      255477 : zkchinese1(GEN zkc, GEN x)
    2595             : {
    2596      255477 :   GEN v = gel(zkc,1), UV = gel(zkc,2), z = zkadd1(zkmul(v, zksub1(x)));
    2597      255435 :   return (typ(z) == t_INT)? z: ZC_hnfrem(z, UV);
    2598             : }
    2599             : static GEN
    2600      237456 : zkVchinese1(GEN zkc, GEN v)
    2601             : {
    2602             :   long i, ly;
    2603      237456 :   GEN y = cgetg_copy(v, &ly);
    2604      492868 :   for (i=1; i<ly; i++) gel(y,i) = zkchinese1(zkc, gel(v,i));
    2605      237393 :   return y;
    2606             : }
    2607             : 
    2608             : /* prepare to solve z = x (mod A), z = y mod (B) [zkchinese or zkchinese1] */
    2609             : GEN
    2610      237207 : zkchineseinit(GEN nf, GEN A, GEN B, GEN AB)
    2611             : {
    2612      237207 :   GEN v = idealaddtoone_raw(nf, A, B);
    2613             :   long e;
    2614      237192 :   if ((e = gexpo(v)) > 5)
    2615             :   {
    2616       83279 :     GEN b = (typ(v) == t_COL)? v: scalarcol_shallow(v, nf_get_degree(nf));
    2617       83279 :     b= ZC_reducemodlll(b, AB);
    2618       83285 :     if (gexpo(b) < e) v = b;
    2619             :   }
    2620      237198 :   return mkvec2(zk_scalar_or_multable(nf,v), AB);
    2621             : }
    2622             : /* prepare to solve z = x (mod A), z = 1 mod (B)
    2623             :  * and then         z = 1 (mod A), z = y mod (B) [zkchinese1 twice] */
    2624             : static GEN
    2625         259 : zkchinese1init2(GEN nf, GEN A, GEN B, GEN AB)
    2626             : {
    2627         259 :   GEN zkc = zkchineseinit(nf, A, B, AB);
    2628         259 :   GEN mv = gel(zkc,1), mu;
    2629         259 :   if (typ(mv) == t_INT) return mkvec2(zkc, mkvec2(subui(1,mv),AB));
    2630          35 :   mu = RgM_Rg_add_shallow(ZM_neg(mv), gen_1);
    2631          35 :   return mkvec2(mkvec2(mv,AB), mkvec2(mu,AB));
    2632             : }
    2633             : 
    2634             : static GEN
    2635     2156121 : apply_U(GEN L, GEN a)
    2636             : {
    2637     2156121 :   GEN e, U = gel(L,3), dU = gel(L,4);
    2638     2156121 :   if (typ(a) == t_INT)
    2639      673203 :     e = ZC_Z_mul(gel(U,1), subiu(a, 1));
    2640             :   else
    2641             :   { /* t_COL */
    2642     1482918 :     GEN t = shallowcopy(a);
    2643     1482973 :     gel(t,1) = subiu(gel(t,1), 1); /* t = a - 1 */
    2644     1482908 :     e = ZM_ZC_mul(U, t);
    2645             :   }
    2646     2156054 :   return gdiv(e, dU);
    2647             : }
    2648             : 
    2649             : /* true nf; vectors of [[cyc],[g],U.X^-1]. Assume k > 1. */
    2650             : static GEN
    2651      169273 : principal_units(GEN nf, GEN pr, long k, GEN prk)
    2652             : {
    2653             :   GEN list, prb;
    2654      169273 :   ulong mask = quadratic_prec_mask(k);
    2655      169274 :   long a = 1;
    2656             : 
    2657      169274 :   prb = pr_hnf(nf,pr);
    2658      169274 :   list = vectrunc_init(k);
    2659      406487 :   while (mask > 1)
    2660             :   {
    2661      237216 :     GEN pra = prb;
    2662      237216 :     long b = a << 1;
    2663             : 
    2664      237216 :     if (mask & 1) b--;
    2665      237216 :     mask >>= 1;
    2666             :     /* compute 1 + pr^a / 1 + pr^b, 2a <= b */
    2667      237216 :     prb = (b >= k)? prk: idealpows(nf,pr,b);
    2668      237214 :     vectrunc_append(list, zidealij(pra, prb));
    2669      237215 :     a = b;
    2670             :   }
    2671      169271 :   return list;
    2672             : }
    2673             : /* a = 1 mod (pr) return log(a) on local-gens of 1+pr/1+pr^k */
    2674             : static GEN
    2675     1331579 : log_prk1(GEN nf, GEN a, long nh, GEN L2, GEN prk)
    2676             : {
    2677     1331579 :   GEN y = cgetg(nh+1, t_COL);
    2678     1331603 :   long j, iy, c = lg(L2)-1;
    2679     3487731 :   for (j = iy = 1; j <= c; j++)
    2680             :   {
    2681     2156113 :     GEN L = gel(L2,j), cyc = gel(L,1), gen = gel(L,2), E = apply_U(L,a);
    2682     2155948 :     long i, nc = lg(cyc)-1;
    2683     2155948 :     int last = (j == c);
    2684     5825091 :     for (i = 1; i <= nc; i++, iy++)
    2685             :     {
    2686     3668963 :       GEN t, e = gel(E,i);
    2687     3668963 :       if (typ(e) != t_INT) pari_err_COPRIME("zlog_prk1", a, prk);
    2688     3668956 :       t = Fp_neg(e, gel(cyc,i));
    2689     3669003 :       gel(y,iy) = negi(t);
    2690     3669126 :       if (!last && signe(t)) a = nfmulpowmodideal(nf, a, gel(gen,i), t, prk);
    2691             :     }
    2692             :   }
    2693     1331618 :   return y;
    2694             : }
    2695             : /* true nf */
    2696             : static GEN
    2697       56777 : principal_units_relations(GEN nf, GEN L2, GEN prk, long nh)
    2698             : {
    2699       56777 :   GEN h = cgetg(nh+1,t_MAT);
    2700       56777 :   long ih, j, c = lg(L2)-1;
    2701      181493 :   for (j = ih = 1; j <= c; j++)
    2702             :   {
    2703      124718 :     GEN L = gel(L2,j), F = gel(L,1), G = gel(L,2);
    2704      124718 :     long k, lG = lg(G);
    2705      304950 :     for (k = 1; k < lG; k++,ih++)
    2706             :     { /* log(g^f) mod pr^e */
    2707      180234 :       GEN a = nfpowmodideal(nf,gel(G,k),gel(F,k),prk);
    2708      180232 :       gel(h,ih) = ZC_neg(log_prk1(nf, a, nh, L2, prk));
    2709      180232 :       gcoeff(h,ih,ih) = gel(F,k);
    2710             :     }
    2711             :   }
    2712       56775 :   return h;
    2713             : }
    2714             : /* true nf; k > 1; multiplicative group (1 + pr) / (1 + pr^k) */
    2715             : static GEN
    2716      169276 : idealprincipalunits_i(GEN nf, GEN pr, long k, GEN *pU)
    2717             : {
    2718      169276 :   GEN cyc, gen, L2, prk = idealpows(nf, pr, k);
    2719             : 
    2720      169274 :   L2 = principal_units(nf, pr, k, prk);
    2721      169279 :   if (k == 2)
    2722             :   {
    2723      112503 :     GEN L = gel(L2,1);
    2724      112503 :     cyc = gel(L,1);
    2725      112503 :     gen = gel(L,2);
    2726      112503 :     if (pU) *pU = matid(lg(gen)-1);
    2727             :   }
    2728             :   else
    2729             :   {
    2730       56776 :     long c = lg(L2), j;
    2731       56776 :     GEN EX, h, Ui, vg = cgetg(c, t_VEC);
    2732      181492 :     for (j = 1; j < c; j++) gel(vg, j) = gmael(L2,j,2);
    2733       56776 :     vg = shallowconcat1(vg);
    2734       56777 :     h = principal_units_relations(nf, L2, prk, lg(vg)-1);
    2735       56777 :     h = ZM_hnfall_i(h, NULL, 0);
    2736       56776 :     cyc = ZM_snf_group(h, pU, &Ui);
    2737       56777 :     c = lg(Ui); gen = cgetg(c, t_VEC); EX = cyc_get_expo(cyc);
    2738      188796 :     for (j = 1; j < c; j++)
    2739      132020 :       gel(gen,j) = famat_to_nf_modideal_coprime(nf, vg, gel(Ui,j), prk, EX);
    2740             :   }
    2741      169279 :   return mkvec4(cyc, gen, prk, L2);
    2742             : }
    2743             : GEN
    2744         182 : idealprincipalunits(GEN nf, GEN pr, long k)
    2745             : {
    2746             :   pari_sp av;
    2747             :   GEN v;
    2748         182 :   nf = checknf(nf);
    2749         182 :   if (k == 1) { checkprid(pr); retmkvec3(gen_1,cgetg(1,t_VEC),cgetg(1,t_VEC)); }
    2750         175 :   av = avma; v = idealprincipalunits_i(nf, pr, k, NULL);
    2751         175 :   return gerepilecopy(av, mkvec3(powiu(pr_norm(pr), k-1), gel(v,1), gel(v,2)));
    2752             : }
    2753             : 
    2754             : /* true nf; given an ideal pr^k dividing an integral ideal x (in HNF form)
    2755             :  * compute an 'sprk', the structure of G = (Z_K/pr^k)^* [ x = NULL for x=pr^k ]
    2756             :  * Return a vector with at least 4 components [cyc],[gen],[HNF pr^k,pr,k],ff,
    2757             :  * where
    2758             :  * cyc : type of G as abelian group (SNF)
    2759             :  * gen : generators of G, coprime to x
    2760             :  * pr^k: in HNF
    2761             :  * ff  : data for log_g in (Z_K/pr)^*
    2762             :  * Two extra components are present iff k > 1: L2, U
    2763             :  * L2  : list of data structures to compute local DL in (Z_K/pr)^*,
    2764             :  *       and 1 + pr^a/ 1 + pr^b for various a < b <= min(2a, k)
    2765             :  * U   : base change matrices to convert a vector of local DL to DL wrt gen
    2766             :  * If MOD is not NULL, initialize G / G^MOD instead */
    2767             : static GEN
    2768      426072 : sprkinit(GEN nf, GEN pr, long k, GEN x, GEN MOD)
    2769             : {
    2770      426072 :   GEN T, p, Ld, modpr, cyc, gen, g, g0, A, prk, U, L2, ord0 = NULL;
    2771      426072 :   long f = pr_get_f(pr);
    2772             : 
    2773      426070 :   if(DEBUGLEVEL>3) err_printf("treating pr^%ld, pr = %Ps\n",k,pr);
    2774      426070 :   modpr = nf_to_Fq_init(nf, &pr,&T,&p);
    2775      426107 :   if (MOD)
    2776             :   {
    2777      378486 :     GEN o = subiu(powiu(p,f), 1), d = gcdii(o, MOD), fa = Z_factor(d);
    2778      378456 :     ord0 = mkvec2(o, fa); /* true order, factorization of order in G/G^MOD */
    2779      378453 :     Ld = gel(fa,1);
    2780      378453 :     if (lg(Ld) > 1 && equaliu(gel(Ld,1),2)) Ld = vecslice(Ld,2,lg(Ld)-1);
    2781             :   }
    2782             :   /* (Z_K / pr)^* */
    2783      426085 :   if (f == 1)
    2784             :   {
    2785      336899 :     g0 = g = MOD? pgener_Fp_local(p, Ld): pgener_Fp(p);
    2786      336911 :     if (!ord0) ord0 = get_arith_ZZM(subiu(p,1));
    2787             :   }
    2788             :   else
    2789             :   {
    2790       89186 :     g0 = g = MOD? gener_FpXQ_local(T, p, Ld): gener_FpXQ(T,p, &ord0);
    2791       89185 :     g = Fq_to_nf(g, modpr);
    2792       89185 :     if (typ(g) == t_POL) g = poltobasis(nf, g);
    2793             :   }
    2794      426113 :   A = gel(ord0, 1); /* Norm(pr)-1 */
    2795             :   /* If MOD != NULL, d = gcd(A, MOD): g^(A/d) has order d */
    2796      426113 :   if (k == 1)
    2797             :   {
    2798      257013 :     cyc = mkvec(A);
    2799      257014 :     gen = mkvec(g);
    2800      257011 :     prk = pr_hnf(nf,pr);
    2801      257019 :     L2 = U = NULL;
    2802             :   }
    2803             :   else
    2804             :   { /* local-gens of (1 + pr)/(1 + pr^k) = SNF-gens * U */
    2805             :     GEN AB, B, u, v, w;
    2806             :     long j, l;
    2807      169100 :     w = idealprincipalunits_i(nf, pr, k, &U);
    2808             :     /* incorporate (Z_K/pr)^*, order A coprime to B = expo(1+pr/1+pr^k)*/
    2809      169103 :     cyc = leafcopy(gel(w,1)); B = cyc_get_expo(cyc); AB = mulii(A,B);
    2810      169093 :     gen = leafcopy(gel(w,2));
    2811      169091 :     prk = gel(w,3);
    2812      169091 :     g = nfpowmodideal(nf, g, B, prk);
    2813      169104 :     g0 = Fq_pow(g0, modii(B,A), T, p); /* update primitive root */
    2814      169100 :     L2 = mkvec3(A, g, gel(w,4));
    2815      169098 :     gel(cyc,1) = AB;
    2816      169098 :     gel(gen,1) = nfmulmodideal(nf, gel(gen,1), g, prk);
    2817      169091 :     u = mulii(Fp_inv(A,B), A);
    2818      169090 :     v = subui(1, u); l = lg(U);
    2819      505951 :     for (j = 1; j < l; j++) gcoeff(U,1,j) = Fp_mul(u, gcoeff(U,1,j), AB);
    2820      169084 :     U = mkvec2(Rg_col_ei(v, lg(gen)-1, 1), U);
    2821             :   }
    2822             :   /* local-gens of (Z_K/pr^k)^* = SNF-gens * U */
    2823      426107 :   if (x)
    2824             :   {
    2825      236955 :     GEN uv = zkchineseinit(nf, idealmulpowprime(nf,x,pr,utoineg(k)), prk, x);
    2826      236939 :     gen = zkVchinese1(uv, gen);
    2827             :   }
    2828      426046 :   return mkvecn(U? 6: 4, cyc, gen, prk, mkvec3(modpr,g0,ord0), L2, U);
    2829             : }
    2830             : GEN
    2831     3984161 : sprk_get_cyc(GEN s) { return gel(s,1); }
    2832             : GEN
    2833     1969684 : sprk_get_expo(GEN s) { return cyc_get_expo(sprk_get_cyc(s)); }
    2834             : GEN
    2835      335931 : sprk_get_gen(GEN s) { return gel(s,2); }
    2836             : GEN
    2837     4917727 : sprk_get_prk(GEN s) { return gel(s,3); }
    2838             : GEN
    2839     2543587 : sprk_get_ff(GEN s) { return gel(s,4); }
    2840             : GEN
    2841     2604029 : sprk_get_pr(GEN s) { GEN ff = gel(s,4); return modpr_get_pr(gel(ff,1)); }
    2842             : /* L2 to 1 + pr / 1 + pr^k */
    2843             : static GEN
    2844     1213649 : sprk_get_L2(GEN s) { return gmael(s,5,3); }
    2845             : /* lift to nf of primitive root of k(pr) */
    2846             : static GEN
    2847      318219 : sprk_get_gnf(GEN s) { return gmael(s,5,2); }
    2848             : /* A = Npr-1, <g> = (Z_K/pr)^*, L2 to 1 + pr / 1 + pr^k */
    2849             : void
    2850           0 : sprk_get_AgL2(GEN s, GEN *A, GEN *g, GEN *L2)
    2851           0 : { GEN v = gel(s,5); *A = gel(v,1); *g = gel(v,2); *L2 = gel(v,3); }
    2852             : void
    2853     1205066 : sprk_get_U2(GEN s, GEN *U1, GEN *U2)
    2854     1205066 : { GEN v = gel(s,6); *U1 = gel(v,1); *U2 = gel(v,2); }
    2855             : static int
    2856     2543574 : sprk_is_prime(GEN s) { return lg(s) == 5; }
    2857             : 
    2858             : GEN
    2859     1969488 : famat_zlog_pr(GEN nf, GEN g, GEN e, GEN sprk, GEN mod)
    2860             : {
    2861     1969488 :   GEN x, expo = sprk_get_expo(sprk);
    2862     1969490 :   if (mod) expo = gcdii(expo,mod);
    2863     1969479 :   x = famat_makecoprime(nf, g, e, sprk_get_pr(sprk), sprk_get_prk(sprk), expo);
    2864     1969479 :   return log_prk(nf, x, sprk, mod);
    2865             : }
    2866             : /* famat_zlog_pr assuming (g,sprk.pr) = 1 */
    2867             : static GEN
    2868         196 : famat_zlog_pr_coprime(GEN nf, GEN g, GEN e, GEN sprk, GEN MOD)
    2869             : {
    2870         196 :   GEN x = famat_to_nf_modideal_coprime(nf, g, e, sprk_get_prk(sprk),
    2871             :                                        sprk_get_expo(sprk));
    2872         196 :   return log_prk(nf, x, sprk, MOD);
    2873             : }
    2874             : 
    2875             : /* o t_INT, O = [ord,fa] format for multiple of o (for Fq_log);
    2876             :  * return o in [ord,fa] format */
    2877             : static GEN
    2878      560252 : order_update(GEN o, GEN O)
    2879             : {
    2880      560252 :   GEN p = gmael(O,2,1), z = o, P, E;
    2881      560252 :   long i, j, l = lg(p);
    2882      560252 :   P = cgetg(l, t_COL);
    2883      560248 :   E = cgetg(l, t_COL);
    2884      617467 :   for (i = j = 1; i < l; i++)
    2885             :   {
    2886      617467 :     long v = Z_pvalrem(z, gel(p,i), &z);
    2887      617414 :     if (v)
    2888             :     {
    2889      604320 :       gel(P,j) = gel(p,i);
    2890      604320 :       gel(E,j) = utoipos(v); j++;
    2891      604346 :       if (is_pm1(z)) break;
    2892             :     }
    2893             :   }
    2894      560220 :   setlg(P, j);
    2895      560216 :   setlg(E, j); return mkvec2(o, mkmat2(P,E));
    2896             : }
    2897             : 
    2898             : /* a in Z_K (t_COL or t_INT), pr prime ideal, sprk = sprkinit(nf,pr,k,x),
    2899             :  * mod positive t_INT or NULL (meaning mod=0).
    2900             :  * return log(a) modulo mod on SNF-generators of (Z_K/pr^k)^* */
    2901             : GEN
    2902     2617524 : log_prk(GEN nf, GEN a, GEN sprk, GEN mod)
    2903             : {
    2904             :   GEN e, prk, g, U1, U2, y, ff, O, o, oN, gN,  N, T, p, modpr, pr, cyc;
    2905             : 
    2906     2617524 :   if (typ(a) == t_MAT) return famat_zlog_pr(nf, gel(a,1), gel(a,2), sprk, mod);
    2907     2543564 :   N = NULL;
    2908     2543564 :   ff = sprk_get_ff(sprk);
    2909     2543585 :   pr = gel(ff,1); /* modpr */
    2910     2543585 :   g = gN = gel(ff,2);
    2911     2543585 :   O = gel(ff,3); /* order of g = |Fq^*|, in [ord, fa] format */
    2912     2543585 :   o = oN = gel(O,1); /* order as a t_INT */
    2913     2543585 :   prk = sprk_get_prk(sprk);
    2914     2543595 :   modpr = nf_to_Fq_init(nf, &pr, &T, &p);
    2915     2543599 :   if (mod)
    2916             :   {
    2917     2027202 :     GEN d = gcdii(o,mod);
    2918     2027000 :     if (!equalii(o, d))
    2919             :     {
    2920      751102 :       N = diviiexact(o,d); /* > 1, coprime to p */
    2921      751042 :       a = nfpowmodideal(nf, a, N, prk);
    2922      751194 :       oN = d; /* order of g^N mod pr */
    2923             :     }
    2924             :   }
    2925     2543437 :   if (equali1(oN))
    2926      398161 :     e = gen_0;
    2927             :   else
    2928             :   {
    2929     2145341 :     if (N) { O = order_update(oN, O); gN = Fq_pow(g, N, T, p); }
    2930     2145340 :     e = Fq_log(nf_to_Fq(nf,a,modpr), gN, O, T, p);
    2931             :   }
    2932             :   /* 0 <= e < oN is correct modulo oN */
    2933     2543595 :   if (sprk_is_prime(sprk)) return mkcol(e); /* k = 1 */
    2934             : 
    2935      800592 :   sprk_get_U2(sprk, &U1,&U2);
    2936      800681 :   cyc = sprk_get_cyc(sprk);
    2937      800687 :   if (mod)
    2938             :   {
    2939      379331 :     cyc = ZV_snf_gcd(cyc, mod);
    2940      379310 :     if (signe(remii(mod,p))) return ZV_ZV_mod(ZC_Z_mul(U1,e), cyc);
    2941             :   }
    2942      746953 :   if (signe(e))
    2943             :   {
    2944      318219 :     GEN E = N? mulii(e, N): e;
    2945      318219 :     a = nfmulpowmodideal(nf, a, sprk_get_gnf(sprk), Fp_neg(E, o), prk);
    2946             :   }
    2947             :   /* a = 1 mod pr */
    2948      746953 :   y = log_prk1(nf, a, lg(U2)-1, sprk_get_L2(sprk), prk);
    2949      746993 :   if (N)
    2950             :   { /* from DL(a^N) to DL(a) */
    2951      135407 :     GEN E = gel(sprk_get_cyc(sprk), 1), q = powiu(p, Z_pval(E, p));
    2952      135407 :     y = ZC_Z_mul(y, Fp_inv(N, q));
    2953             :   }
    2954      746991 :   y = ZC_lincomb(gen_1, e, ZM_ZC_mul(U2,y), U1);
    2955      746987 :   return ZV_ZV_mod(y, cyc);
    2956             : }
    2957             : /* true nf */
    2958             : GEN
    2959       90236 : log_prk_init(GEN nf, GEN pr, long k, GEN MOD)
    2960       90236 : { return sprkinit(nf,pr,k,NULL,MOD);}
    2961             : GEN
    2962         497 : veclog_prk(GEN nf, GEN v, GEN sprk)
    2963             : {
    2964         497 :   long l = lg(v), i;
    2965         497 :   GEN w = cgetg(l, t_MAT);
    2966        1232 :   for (i = 1; i < l; i++) gel(w,i) = log_prk(nf, gel(v,i), sprk, NULL);
    2967         497 :   return w;
    2968             : }
    2969             : 
    2970             : static GEN
    2971     1374187 : famat_zlog(GEN nf, GEN fa, GEN sgn, zlog_S *S)
    2972             : {
    2973     1374187 :   long i, l0, l = lg(S->U);
    2974     1374187 :   GEN g = gel(fa,1), e = gel(fa,2), y = cgetg(l, t_COL);
    2975     1374187 :   l0 = lg(S->sprk); /* = l (trivial arch. part), or l-1 */
    2976     2852232 :   for (i=1; i < l0; i++) gel(y,i) = famat_zlog_pr(nf, g, e, gel(S->sprk,i), S->mod);
    2977     1374181 :   if (l0 != l)
    2978             :   {
    2979      190902 :     if (!sgn) sgn = nfsign_arch(nf, fa, S->archp);
    2980      190902 :     gel(y,l0) = Flc_to_ZC(sgn);
    2981             :   }
    2982     1374181 :   return y;
    2983             : }
    2984             : 
    2985             : /* assume that cyclic factors are normalized, in particular != [1] */
    2986             : static GEN
    2987      257550 : split_U(GEN U, GEN Sprk)
    2988             : {
    2989      257550 :   long t = 0, k, n, l = lg(Sprk);
    2990      257550 :   GEN vU = cgetg(l+1, t_VEC);
    2991      592713 :   for (k = 1; k < l; k++)
    2992             :   {
    2993      335161 :     n = lg(sprk_get_cyc(gel(Sprk,k))) - 1; /* > 0 */
    2994      335162 :     gel(vU,k) = vecslice(U, t+1, t+n);
    2995      335166 :     t += n;
    2996             :   }
    2997             :   /* t+1 .. lg(U)-1 */
    2998      257552 :   n = lg(U) - t - 1; /* can be 0 */
    2999      257552 :   if (!n) setlg(vU,l); else gel(vU,l) = vecslice(U, t+1, t+n);
    3000      257557 :   return vU;
    3001             : }
    3002             : 
    3003             : static void
    3004     1990766 : init_zlog_mod(zlog_S *S, GEN bid, GEN mod)
    3005             : {
    3006     1990766 :   GEN fa2 = bid_get_fact2(bid), MOD = bid_get_MOD(bid);
    3007     1990757 :   S->U = bid_get_U(bid);
    3008     1990753 :   S->hU = lg(bid_get_cyc(bid))-1;
    3009     1990747 :   S->archp = bid_get_archp(bid);
    3010     1990744 :   S->sprk = bid_get_sprk(bid);
    3011     1990742 :   S->bid = bid;
    3012     1990742 :   if (MOD) mod = mod? gcdii(mod, MOD): MOD;
    3013     1990632 :   S->mod = mod;
    3014     1990632 :   S->P = gel(fa2,1);
    3015     1990632 :   S->k = gel(fa2,2);
    3016     1990632 :   S->no2 = lg(S->P) == lg(gel(bid_get_fact(bid),1));
    3017     1990653 : }
    3018             : void
    3019      380267 : init_zlog(zlog_S *S, GEN bid)
    3020             : {
    3021      380267 :   return init_zlog_mod(S, bid, NULL);
    3022             : }
    3023             : 
    3024             : /* a a t_FRAC/t_INT, reduce mod bid */
    3025             : static GEN
    3026          14 : Q_mod_bid(GEN bid, GEN a)
    3027             : {
    3028          14 :   GEN xZ = gcoeff(bid_get_ideal(bid),1,1);
    3029          14 :   GEN b = Rg_to_Fp(a, xZ);
    3030          14 :   if (gsigne(a) < 0) b = subii(b, xZ);
    3031          14 :   return signe(b)? b: xZ;
    3032             : }
    3033             : /* Return decomposition of a on the CRT generators blocks attached to the
    3034             :  * S->sprk and sarch; sgn = sign(a, S->arch), NULL if unknown */
    3035             : static GEN
    3036      381532 : zlog(GEN nf, GEN a, GEN sgn, zlog_S *S)
    3037             : {
    3038             :   long k, l;
    3039             :   GEN y;
    3040      381532 :   a = nf_to_scalar_or_basis(nf, a);
    3041      381521 :   switch(typ(a))
    3042             :   {
    3043      162584 :     case t_INT: break;
    3044          14 :     case t_FRAC: a = Q_mod_bid(S->bid, a); break;
    3045      218923 :     default: /* case t_COL: */
    3046             :     {
    3047             :       GEN den;
    3048      218923 :       check_nfelt(a, &den);
    3049      218948 :       if (den)
    3050             :       {
    3051         105 :         a = Q_muli_to_int(a, den);
    3052         105 :         a = mkmat2(mkcol2(a, den), mkcol2(gen_1, gen_m1));
    3053         105 :         return famat_zlog(nf, a, sgn, S);
    3054             :       }
    3055             :     }
    3056             :   }
    3057      381429 :   if (sgn)
    3058      374527 :     sgn = (lg(sgn) == 1)? NULL: leafcopy(sgn);
    3059             :   else
    3060        6902 :     sgn = (lg(S->archp) == 1)? NULL: nfsign_arch(nf, a, S->archp);
    3061      381435 :   l = lg(S->sprk);
    3062      381435 :   y = cgetg(sgn? l+1: l, t_COL);
    3063      922770 :   for (k = 1; k < l; k++)
    3064             :   {
    3065      541394 :     GEN sprk = gel(S->sprk,k);
    3066      541394 :     gel(y,k) = log_prk(nf, a, sprk, S->mod);
    3067             :   }
    3068      381376 :   if (sgn) gel(y,l) = Flc_to_ZC(sgn);
    3069      381385 :   return y;
    3070             : }
    3071             : 
    3072             : /* true nf */
    3073             : GEN
    3074       43813 : pr_basis_perm(GEN nf, GEN pr)
    3075             : {
    3076       43813 :   long f = pr_get_f(pr);
    3077             :   GEN perm;
    3078       43813 :   if (f == nf_get_degree(nf)) return identity_perm(f);
    3079       38164 :   perm = cgetg(f+1, t_VECSMALL);
    3080       38164 :   perm[1] = 1;
    3081       38164 :   if (f > 1)
    3082             :   {
    3083        2912 :     GEN H = pr_hnf(nf,pr);
    3084             :     long i, k;
    3085       10808 :     for (i = k = 2; k <= f; i++)
    3086        7896 :       if (!equali1(gcoeff(H,i,i))) perm[k++] = i;
    3087             :   }
    3088       38164 :   return perm;
    3089             : }
    3090             : 
    3091             : /* \sum U[i]*y[i], U[i] ZM, y[i] ZC. We allow lg(y) > lg(U). */
    3092             : static GEN
    3093     1755679 : ZMV_ZCV_mul(GEN U, GEN y)
    3094             : {
    3095     1755679 :   long i, l = lg(U);
    3096     1755679 :   GEN z = NULL;
    3097     1755679 :   if (l == 1) return cgetg(1,t_COL);
    3098     4140066 :   for (i = 1; i < l; i++)
    3099             :   {
    3100     2384476 :     GEN u = ZM_ZC_mul(gel(U,i), gel(y,i));
    3101     2384433 :     z = z? ZC_add(z, u): u;
    3102             :   }
    3103     1755590 :   return z;
    3104             : }
    3105             : /* A * (x[1], ..., x[d] */
    3106             : static GEN
    3107         518 : ZM_ZMV_mul(GEN A, GEN x)
    3108        1057 : { pari_APPLY_same(ZM_mul(A,gel(x,i))); }
    3109             : 
    3110             : /* a = 1 mod pr, sprk mod pr^e, e >= 1 */
    3111             : static GEN
    3112      404404 : sprk_log_prk1_2(GEN nf, GEN a, GEN sprk)
    3113             : {
    3114      404404 :   GEN U1, U2, y, L2 = sprk_get_L2(sprk);
    3115      404404 :   sprk_get_U2(sprk, &U1,&U2);
    3116      404403 :   y = ZM_ZC_mul(U2, log_prk1(nf, a, lg(U2)-1, L2, sprk_get_prk(sprk)));
    3117      404394 :   return ZV_ZV_mod(y, sprk_get_cyc(sprk));
    3118             : }
    3119             : /* true nf; assume e >= 2 */
    3120             : GEN
    3121      105867 : sprk_log_gen_pr2(GEN nf, GEN sprk, long e)
    3122             : {
    3123      105867 :   GEN M, G, pr = sprk_get_pr(sprk);
    3124             :   long i, l;
    3125      105867 :   if (e == 2)
    3126             :   {
    3127       62306 :     GEN L2 = sprk_get_L2(sprk), L = gel(L2,1);
    3128       62306 :     G = gel(L,2); l = lg(G);
    3129             :   }
    3130             :   else
    3131             :   {
    3132       43561 :     GEN perm = pr_basis_perm(nf,pr), PI = nfpow_u(nf, pr_get_gen(pr), e-1);
    3133       43561 :     l = lg(perm);
    3134       43561 :     G = cgetg(l, t_VEC);
    3135       43561 :     if (typ(PI) == t_INT)
    3136             :     { /* zk_ei_mul doesn't allow t_INT */
    3137        5642 :       long N = nf_get_degree(nf);
    3138        5642 :       gel(G,1) = addiu(PI,1);
    3139        8645 :       for (i = 2; i < l; i++)
    3140             :       {
    3141        3003 :         GEN z = col_ei(N, 1);
    3142        3003 :         gel(G,i) = z; gel(z, perm[i]) = PI;
    3143             :       }
    3144             :     }
    3145             :     else
    3146             :     {
    3147       37919 :       gel(G,1) = nfadd(nf, gen_1, PI);
    3148       44702 :       for (i = 2; i < l; i++)
    3149        6783 :         gel(G,i) = nfadd(nf, gen_1, zk_ei_mul(nf, PI, perm[i]));
    3150             :     }
    3151             :   }
    3152      105867 :   M = cgetg(l, t_MAT);
    3153      234398 :   for (i = 1; i < l; i++) gel(M,i) = sprk_log_prk1_2(nf, gel(G,i), sprk);
    3154      105848 :   return M;
    3155             : }
    3156             : /* Log on bid.gen of generators of P_{1,I pr^{e-1}} / P_{1,I pr^e} (I,pr) = 1,
    3157             :  * defined implicitly via CRT. 'ind' is the index of pr in modulus
    3158             :  * factorization; true nf */
    3159             : GEN
    3160      413964 : log_gen_pr(zlog_S *S, long ind, GEN nf, long e)
    3161             : {
    3162      413964 :   GEN Uind = gel(S->U, ind);
    3163      413964 :   if (e == 1) retmkmat( gel(Uind,1) );
    3164      103168 :   return ZM_mul(Uind, sprk_log_gen_pr2(nf, gel(S->sprk,ind), e));
    3165             : }
    3166             : /* true nf */
    3167             : GEN
    3168        2037 : sprk_log_gen_pr(GEN nf, GEN sprk, long e)
    3169             : {
    3170        2037 :   if (e == 1)
    3171             :   {
    3172           0 :     long n = lg(sprk_get_cyc(sprk))-1;
    3173           0 :     retmkmat(col_ei(n, 1));
    3174             :   }
    3175        2037 :   return sprk_log_gen_pr2(nf, sprk, e);
    3176             : }
    3177             : /* a = 1 mod pr */
    3178             : GEN
    3179      275854 : sprk_log_prk1(GEN nf, GEN a, GEN sprk)
    3180             : {
    3181      275854 :   if (lg(sprk) == 5) return mkcol(gen_0); /* mod pr */
    3182      275854 :   return sprk_log_prk1_2(nf, a, sprk);
    3183             : }
    3184             : /* Log on bid.gen of generator of P_{1,f} / P_{1,f v[index]}
    3185             :  * v = vector of r1 real places */
    3186             : GEN
    3187       86273 : log_gen_arch(zlog_S *S, long index) { return gel(veclast(S->U), index); }
    3188             : 
    3189             : /* compute bid.clgp: [h,cyc] or [h,cyc,gen] */
    3190             : static GEN
    3191      258578 : bid_grp(GEN nf, GEN U, GEN cyc, GEN g, GEN F, GEN sarch)
    3192             : {
    3193      258578 :   GEN G, h = ZV_prod(cyc);
    3194             :   long c;
    3195      258587 :   if (!U) return mkvec2(h,cyc);
    3196      258230 :   c = lg(U);
    3197      258230 :   G = cgetg(c,t_VEC);
    3198      258238 :   if (c > 1)
    3199             :   {
    3200      228140 :     GEN U0, Uoo, EX = cyc_get_expo(cyc); /* exponent of bid */
    3201      228137 :     long i, hU = nbrows(U), nba = lg(sarch_get_cyc(sarch))-1; /* #f_oo */
    3202      228149 :     if (!nba) { U0 = U; Uoo = NULL; }
    3203       80416 :     else if (nba == hU) { U0 = NULL; Uoo = U; }
    3204             :     else
    3205             :     {
    3206       71274 :       U0 = rowslice(U, 1, hU-nba);
    3207       71279 :       Uoo = rowslice(U, hU-nba+1, hU);
    3208             :     }
    3209      695678 :     for (i = 1; i < c; i++)
    3210             :     {
    3211      467533 :       GEN t = gen_1;
    3212      467533 :       if (U0) t = famat_to_nf_modideal_coprime(nf, g, gel(U0,i), F, EX);
    3213      467524 :       if (Uoo) t = set_sign_mod_divisor(nf, ZV_to_Flv(gel(Uoo,i),2), t, sarch);
    3214      467528 :       gel(G,i) = t;
    3215             :     }
    3216             :   }
    3217      258243 :   return mkvec3(h, cyc, G);
    3218             : }
    3219             : 
    3220             : /* remove prime ideals of norm 2 with exponent 1 from factorization */
    3221             : static GEN
    3222      258916 : famat_strip2(GEN fa)
    3223             : {
    3224      258916 :   GEN P = gel(fa,1), E = gel(fa,2), Q, F;
    3225      258916 :   long l = lg(P), i, j;
    3226      258916 :   Q = cgetg(l, t_COL);
    3227      258907 :   F = cgetg(l, t_COL);
    3228      634037 :   for (i = j = 1; i < l; i++)
    3229             :   {
    3230      375136 :     GEN pr = gel(P,i), e = gel(E,i);
    3231      375136 :     if (!absequaliu(pr_get_p(pr), 2) || itou(e) != 1 || pr_get_f(pr) != 1)
    3232             :     {
    3233      336505 :       gel(Q,j) = pr;
    3234      336505 :       gel(F,j) = e; j++;
    3235             :     }
    3236             :   }
    3237      258901 :   setlg(Q,j);
    3238      258901 :   setlg(F,j); return mkmat2(Q,F);
    3239             : }
    3240             : static int
    3241      134091 : checkarchp(GEN v, long r1)
    3242             : {
    3243      134091 :   long i, l = lg(v);
    3244      134091 :   pari_sp av = avma;
    3245             :   GEN p;
    3246      134091 :   if (l == 1) return 1;
    3247       47155 :   if (l == 2) return v[1] > 0 && v[1] <= r1;
    3248       22018 :   p = zero_zv(r1);
    3249       66144 :   for (i = 1; i < l; i++)
    3250             :   {
    3251       44159 :     long j = v[i];
    3252       44159 :     if (j <= 0 || j > r1 || p[j]) return gc_long(av, 0);
    3253       44124 :     p[j] = 1;
    3254             :   }
    3255       21985 :   return gc_long(av, 1);
    3256             : }
    3257             : 
    3258             : /* True nf. Put ideal to form [[ideal,arch]] and set fa and fa2 to its
    3259             :  * factorization, archp to the indices of arch places */
    3260             : GEN
    3261      258911 : check_mod_factored(GEN nf, GEN ideal, GEN *fa_, GEN *fa2_, GEN *archp_, GEN MOD)
    3262             : {
    3263             :   GEN arch, x, fa, fa2, archp;
    3264             :   long R1;
    3265             : 
    3266      258911 :   R1 = nf_get_r1(nf);
    3267      258912 :   if (typ(ideal) == t_VEC && lg(ideal) == 3)
    3268             :   {
    3269      178717 :     arch = gel(ideal,2);
    3270      178717 :     ideal= gel(ideal,1);
    3271      178717 :     switch(typ(arch))
    3272             :     {
    3273       44625 :       case t_VEC:
    3274       44625 :         if (lg(arch) != R1+1)
    3275           7 :           pari_err_TYPE("Idealstar [incorrect archimedean component]",arch);
    3276       44618 :         archp = vec01_to_indices(arch);
    3277       44618 :         break;
    3278      134092 :       case t_VECSMALL:
    3279      134092 :         if (!checkarchp(arch, R1))
    3280          35 :           pari_err_TYPE("Idealstar [incorrect archimedean component]",arch);
    3281      134058 :         archp = arch;
    3282      134058 :         arch = indices_to_vec01(archp, R1);
    3283      134055 :         break;
    3284           0 :       default:
    3285           0 :         pari_err_TYPE("Idealstar [incorrect archimedean component]",arch);
    3286             :         return NULL;/*LCOV_EXCL_LINE*/
    3287             :     }
    3288             :   }
    3289             :   else
    3290             :   {
    3291       80195 :     arch = zerovec(R1);
    3292       80190 :     archp = cgetg(1, t_VECSMALL);
    3293             :   }
    3294      258856 :   if (MOD)
    3295             :   {
    3296      214252 :     if (typ(MOD) != t_INT) pari_err_TYPE("bnrinit [incorrect cycmod]", MOD);
    3297      214252 :     if (mpodd(MOD) && lg(archp) != 1)
    3298         231 :       MOD = shifti(MOD, 1); /* ensure elements of G^MOD are >> 0 */
    3299             :   }
    3300      258859 :   if (is_nf_factor(ideal))
    3301             :   {
    3302       40362 :     fa = ideal;
    3303       40362 :     x = factorbackprime(nf, gel(fa,1), gel(fa,2));
    3304             :   }
    3305             :   else
    3306             :   {
    3307      218501 :     fa = idealfactor(nf, ideal);
    3308      218525 :     x = ideal;
    3309             :   }
    3310      258886 :   if (typ(x) != t_MAT) x = idealhnf_shallow(nf, x);
    3311      258860 :   if (lg(x) == 1) pari_err_DOMAIN("Idealstar", "ideal","=",gen_0,x);
    3312      258860 :   if (typ(gcoeff(x,1,1)) != t_INT)
    3313           7 :     pari_err_DOMAIN("Idealstar","denominator(ideal)", "!=",gen_1,x);
    3314             : 
    3315      258853 :   fa2 = famat_strip2(fa);
    3316      258838 :   if (fa_ != NULL) *fa_ = fa;
    3317      258838 :   if (fa2_ != NULL) *fa2_ = fa2;
    3318      258838 :   if (fa2_ != NULL) *archp_ = archp;
    3319      258838 :   return mkvec2(x, arch);
    3320             : }
    3321             : 
    3322             : /* True nf. Compute [[ideal,arch], [h,[cyc],[gen]], idealfact, [liste], U]
    3323             :    flag may include nf_GEN | nf_INIT */
    3324             : static GEN
    3325      258276 : Idealstarmod_i(GEN nf, GEN ideal, long flag, GEN MOD)
    3326             : {
    3327             :   long i, nbp;
    3328      258276 :   GEN y, cyc, U, u1 = NULL, fa, fa2, sprk, x_arch, x, arch, archp, E, P, sarch, gen;
    3329             : 
    3330      258276 :   x_arch = check_mod_factored(nf, ideal, &fa, &fa2, &archp, MOD);
    3331      258197 :   x = gel(x_arch, 1);
    3332      258197 :   arch = gel(x_arch, 2);
    3333             : 
    3334      258197 :   sarch = nfarchstar(nf, x, archp);
    3335      258209 :   P = gel(fa2,1);
    3336      258209 :   E = gel(fa2,2);
    3337      258209 :   nbp = lg(P)-1;
    3338      258209 :   sprk = cgetg(nbp+1,t_VEC);
    3339      258219 :   if (nbp)
    3340             :   {
    3341      218936 :     GEN t = (lg(gel(fa,1))==2)? NULL: x; /* beware fa != fa2 */
    3342      218936 :     cyc = cgetg(nbp+2,t_VEC);
    3343      218923 :     gen = cgetg(nbp+1,t_VEC);
    3344      554797 :     for (i = 1; i <= nbp; i++)
    3345             :     {
    3346      335835 :       GEN L = sprkinit(nf, gel(P,i), itou(gel(E,i)), t, MOD);
    3347      335872 :       gel(sprk,i) = L;
    3348      335872 :       gel(cyc,i) = sprk_get_cyc(L);
    3349             :       /* true gens are congruent to those mod x AND positive at archp */
    3350      335868 :       gel(gen,i) = sprk_get_gen(L);
    3351             :     }
    3352      218962 :     gel(cyc,i) = sarch_get_cyc(sarch);
    3353      218962 :     cyc = shallowconcat1(cyc);
    3354      218962 :     gen = shallowconcat1(gen);
    3355      218966 :     cyc = ZV_snf_group(cyc, &U, (flag & nf_GEN)? &u1: NULL);
    3356             :   }
    3357             :   else
    3358             :   {
    3359       39283 :     cyc = sarch_get_cyc(sarch);
    3360       39283 :     gen = cgetg(1,t_VEC);
    3361       39283 :     U = matid(lg(cyc)-1);
    3362       39284 :     if (flag & nf_GEN) u1 = U;
    3363             :   }
    3364      258235 :   if (MOD) cyc = ZV_snf_gcd(cyc, MOD);
    3365      258215 :   y = bid_grp(nf, u1, cyc, gen, x, sarch);
    3366      258241 :   if (!(flag & nf_INIT)) return y;
    3367      257443 :   U = split_U(U, sprk);
    3368      514904 :   return mkvec5(mkvec2(x, arch), y, mkvec2(fa,fa2),
    3369      257450 :                 MOD? mkvec3(sprk, sarch, MOD): mkvec2(sprk, sarch),
    3370             :                 U);
    3371             : }
    3372             : 
    3373             : static long
    3374          63 : idealHNF_norm_pval(GEN x, GEN p)
    3375             : {
    3376          63 :   long i, v = 0, l = lg(x);
    3377         175 :   for (i = 1; i < l; i++) v += Z_pval(gcoeff(x,i,i), p);
    3378          63 :   return v;
    3379             : }
    3380             : static long
    3381          63 : sprk_get_k(GEN sprk)
    3382             : {
    3383             :   GEN pr, prk;
    3384          63 :   if (sprk_is_prime(sprk)) return 1;
    3385          63 :   pr = sprk_get_pr(sprk);
    3386          63 :   prk = sprk_get_prk(sprk);
    3387          63 :   return idealHNF_norm_pval(prk, pr_get_p(pr)) / pr_get_f(pr);
    3388             : }
    3389             : /* true nf, L a sprk */
    3390             : GEN
    3391          63 : sprk_to_bid(GEN nf, GEN L, long flag)
    3392             : {
    3393          63 :   GEN y, cyc, U, u1 = NULL, fa, fa2, arch, sarch, gen, sprk;
    3394             : 
    3395          63 :   arch = zerovec(nf_get_r1(nf));
    3396          63 :   fa = to_famat_shallow(sprk_get_pr(L), utoipos(sprk_get_k(L)));
    3397          63 :   sarch = nfarchstar(nf, NULL, cgetg(1, t_VECSMALL));
    3398          63 :   fa2 = famat_strip2(fa);
    3399          63 :   sprk = mkvec(L);
    3400          63 :   cyc = shallowconcat(sprk_get_cyc(L), sarch_get_cyc(sarch));
    3401          63 :   gen = sprk_get_gen(L);
    3402          63 :   cyc = ZV_snf_group(cyc, &U, (flag & nf_GEN)? &u1: NULL);
    3403          63 :   y = bid_grp(nf, u1, cyc, gen, NULL, sarch);
    3404          63 :   if (!(flag & nf_INIT)) return y;
    3405          63 :   return mkvec5(mkvec2(sprk_get_prk(L), arch), y, mkvec2(fa,fa2),
    3406             :                 mkvec2(sprk, sarch), split_U(U, sprk));
    3407             : }
    3408             : GEN
    3409      257998 : Idealstarmod(GEN nf, GEN ideal, long flag, GEN MOD)
    3410             : {
    3411      257998 :   pari_sp av = avma;
    3412      257998 :   nf = nf? checknf(nf): nfinit(pol_x(0), DEFAULTPREC);
    3413      257998 :   return gerepilecopy(av, Idealstarmod_i(nf, ideal, flag, MOD));
    3414             : }
    3415             : GEN
    3416         938 : Idealstar(GEN nf, GEN ideal, long flag) { return Idealstarmod(nf, ideal, flag, NULL); }
    3417             : GEN
    3418         273 : Idealstarprk(GEN nf, GEN pr, long k, long flag)
    3419             : {
    3420         273 :   pari_sp av = avma;
    3421         273 :   GEN z = Idealstarmod_i(nf, mkmat2(mkcol(pr),mkcols(k)), flag, NULL);
    3422         273 :   return gerepilecopy(av, z);
    3423             : }
    3424             : 
    3425             : /* FIXME: obsolete */
    3426             : GEN
    3427           0 : zidealstarinitgen(GEN nf, GEN ideal)
    3428           0 : { return Idealstar(nf,ideal, nf_INIT|nf_GEN); }
    3429             : GEN
    3430           0 : zidealstarinit(GEN nf, GEN ideal)
    3431           0 : { return Idealstar(nf,ideal, nf_INIT); }
    3432             : GEN
    3433           0 : zidealstar(GEN nf, GEN ideal)
    3434           0 : { return Idealstar(nf,ideal, nf_GEN); }
    3435             : 
    3436             : GEN
    3437         112 : idealstarmod(GEN nf, GEN ideal, long flag, GEN MOD)
    3438             : {
    3439         112 :   switch(flag)
    3440             :   {
    3441           0 :     case 0: return Idealstarmod(nf,ideal, nf_GEN, MOD);
    3442          98 :     case 1: return Idealstarmod(nf,ideal, nf_INIT, MOD);
    3443          14 :     case 2: return Idealstarmod(nf,ideal, nf_INIT|nf_GEN, MOD);
    3444           0 :     default: pari_err_FLAG("idealstar");
    3445             :   }
    3446             :   return NULL; /* LCOV_EXCL_LINE */
    3447             : }
    3448             : GEN
    3449           0 : idealstar0(GEN nf, GEN ideal,long flag) { return idealstarmod(nf, ideal, flag, NULL); }
    3450             : 
    3451             : void
    3452      218945 : check_nfelt(GEN x, GEN *den)
    3453             : {
    3454      218945 :   long l = lg(x), i;
    3455      218945 :   GEN t, d = NULL;
    3456      218945 :   if (typ(x) != t_COL) pari_err_TYPE("check_nfelt", x);
    3457      809108 :   for (i=1; i<l; i++)
    3458             :   {
    3459      590158 :     t = gel(x,i);
    3460      590158 :     switch (typ(t))
    3461             :     {
    3462      589927 :       case t_INT: break;
    3463         231 :       case t_FRAC:
    3464         231 :         if (!d) d = gel(t,2); else d = lcmii(d, gel(t,2));
    3465         231 :         break;
    3466           0 :       default: pari_err_TYPE("check_nfelt", x);
    3467             :     }
    3468             :   }
    3469      218950 :   *den = d;
    3470      218950 : }
    3471             : 
    3472             : GEN
    3473     1953078 : ZV_snf_gcd(GEN x, GEN mod)
    3474     4358612 : { pari_APPLY_same(gcdii(gel(x,i), mod)); }
    3475             : 
    3476             : /* assume a true bnf and bid */
    3477             : GEN
    3478      227126 : ideallog_units0(GEN bnf, GEN bid, GEN MOD)
    3479             : {
    3480      227126 :   GEN nf = bnf_get_nf(bnf), D, y, C, cyc;
    3481      227126 :   long j, lU = lg(bnf_get_logfu(bnf)); /* r1+r2 */
    3482             :   zlog_S S;
    3483      227125 :   init_zlog_mod(&S, bid, MOD);
    3484      227105 :   if (!S.hU) return zeromat(0,lU);
    3485      227105 :   cyc = bid_get_cyc(bid);
    3486      227096 :   D = nfsign_fu(bnf, bid_get_archp(bid));
    3487      227118 :   y = cgetg(lU, t_MAT);
    3488      227116 :   if ((C = bnf_build_cheapfu(bnf)))
    3489      374494 :   { for (j = 1; j < lU; j++) gel(y,j) = zlog(nf, gel(C,j), gel(D,j), &S); }
    3490             :   else
    3491             :   {
    3492          49 :     long i, l = lg(S.U), l0 = lg(S.sprk);
    3493             :     GEN X, U;
    3494          49 :     if (!(C = bnf_compactfu_mat(bnf))) bnf_build_units(bnf); /* error */
    3495          49 :     X = gel(C,1); U = gel(C,2);
    3496         147 :     for (j = 1; j < lU; j++) gel(y,j) = cgetg(l, t_COL);
    3497         126 :     for (i = 1; i < l0; i++)
    3498             :     {
    3499          77 :       GEN sprk = gel(S.sprk, i);
    3500          77 :       GEN Xi = sunits_makecoprime(X, sprk_get_pr(sprk), sprk_get_prk(sprk));
    3501         231 :       for (j = 1; j < lU; j++)
    3502         154 :         gcoeff(y,i,j) = famat_zlog_pr_coprime(nf, Xi, gel(U,j), sprk, MOD);
    3503             :     }
    3504          49 :     if (l0 != l)
    3505          56 :       for (j = 1; j < lU; j++) gcoeff(y,l0,j) = Flc_to_ZC(gel(D,j));
    3506             :   }
    3507      227112 :   y = vec_prepend(y, zlog(nf, bnf_get_tuU(bnf), nfsign_tu(bnf, S.archp), &S));
    3508      601719 :   for (j = 1; j <= lU; j++)
    3509      374617 :     gel(y,j) = ZV_ZV_mod(ZMV_ZCV_mul(S.U, gel(y,j)), cyc);
    3510      227102 :   return y;
    3511             : }
    3512             : GEN
    3513          84 : ideallog_units(GEN bnf, GEN bid)
    3514          84 : { return ideallog_units0(bnf, bid, NULL); }
    3515             : GEN
    3516         518 : log_prk_units(GEN nf, GEN D, GEN sprk)
    3517             : {
    3518         518 :   GEN L, Ltu = log_prk(nf, gel(D,1), sprk, NULL);
    3519         518 :   D = gel(D,2);
    3520         518 :   if (lg(D) != 3 || typ(gel(D,2)) != t_MAT) L = veclog_prk(nf, D, sprk);
    3521             :   else
    3522             :   {
    3523          21 :     GEN X = gel(D,1), U = gel(D,2);
    3524          21 :     long j, lU = lg(U);
    3525          21 :     X = sunits_makecoprime(X, sprk_get_pr(sprk), sprk_get_prk(sprk));
    3526          21 :     L = cgetg(lU, t_MAT);
    3527          63 :     for (j = 1; j < lU; j++)
    3528          42 :       gel(L,j) = famat_zlog_pr_coprime(nf, X, gel(U,j), sprk, NULL);
    3529             :   }
    3530         518 :   return vec_prepend(L, Ltu);
    3531             : }
    3532             : 
    3533             : static GEN
    3534     1383385 : ideallog_i(GEN nf, GEN x, zlog_S *S)
    3535             : {
    3536     1383385 :   pari_sp av = avma;
    3537             :   GEN y;
    3538     1383385 :   if (!S->hU) return cgetg(1, t_COL);
    3539     1381089 :   if (typ(x) == t_MAT)
    3540     1374082 :     y = famat_zlog(nf, x, NULL, S);
    3541             :   else
    3542        7007 :     y = zlog(nf, x, NULL, S);
    3543     1381082 :   y = ZMV_ZCV_mul(S->U, y);
    3544     1381078 :   return gerepileupto(av, ZV_ZV_mod(y, bid_get_cyc(S->bid)));
    3545             : }
    3546             : GEN
    3547     1390064 : ideallogmod(GEN nf, GEN x, GEN bid, GEN mod)
    3548             : {
    3549             :   zlog_S S;
    3550     1390064 :   if (!nf)
    3551             :   {
    3552        6671 :     if (mod) pari_err_IMPL("Zideallogmod");
    3553        6671 :     return Zideallog(bid, x);
    3554             :   }
    3555     1383393 :   checkbid(bid); init_zlog_mod(&S, bid, mod);
    3556     1383385 :   return ideallog_i(checknf(nf), x, &S);
    3557             : }
    3558             : GEN
    3559       13769 : ideallog(GEN nf, GEN x, GEN bid) { return ideallogmod(nf, x, bid, NULL); }
    3560             : 
    3561             : /*************************************************************************/
    3562             : /**                                                                     **/
    3563             : /**               JOIN BID STRUCTURES, IDEAL LISTS                      **/
    3564             : /**                                                                     **/
    3565             : /*************************************************************************/
    3566             : /* bid1, bid2: for coprime modules m1 and m2 (without arch. part).
    3567             :  * Output: bid for m1 m2 */
    3568             : static GEN
    3569         469 : join_bid(GEN nf, GEN bid1, GEN bid2)
    3570             : {
    3571         469 :   pari_sp av = avma;
    3572             :   long nbgen, l1,l2;
    3573             :   GEN I1,I2, G1,G2, sprk1,sprk2, cyc1,cyc2, sarch;
    3574         469 :   GEN sprk, fa,fa2, U, cyc, y, u1 = NULL, x, gen;
    3575             : 
    3576         469 :   I1 = bid_get_ideal(bid1);
    3577         469 :   I2 = bid_get_ideal(bid2);
    3578         469 :   if (gequal1(gcoeff(I1,1,1))) return bid2; /* frequent trivial case */
    3579         259 :   G1 = bid_get_grp(bid1);
    3580         259 :   G2 = bid_get_grp(bid2);
    3581         259 :   x = idealmul(nf, I1,I2);
    3582         259 :   fa = famat_mul_shallow(bid_get_fact(bid1), bid_get_fact(bid2));
    3583         259 :   fa2= famat_mul_shallow(bid_get_fact2(bid1), bid_get_fact2(bid2));
    3584         259 :   sprk1 = bid_get_sprk(bid1);
    3585         259 :   sprk2 = bid_get_sprk(bid2);
    3586         259 :   sprk = shallowconcat(sprk1, sprk2);
    3587             : 
    3588         259 :   cyc1 = abgrp_get_cyc(G1); l1 = lg(cyc1);
    3589         259 :   cyc2 = abgrp_get_cyc(G2); l2 = lg(cyc2);
    3590         259 :   gen = (lg(G1)>3 && lg(G2)>3)? gen_1: NULL;
    3591         259 :   nbgen = l1+l2-2;
    3592         259 :   cyc = ZV_snf_group(shallowconcat(cyc1,cyc2), &U, gen? &u1: NULL);
    3593         259 :   if (nbgen)
    3594             :   {
    3595         259 :     GEN U1 = bid_get_U(bid1), U2 = bid_get_U(bid2);
    3596           0 :     U1 = l1==1? const_vec(lg(sprk1), cgetg(1,t_MAT))
    3597         259 :               : ZM_ZMV_mul(vecslice(U, 1, l1-1),   U1);
    3598           0 :     U2 = l2==1? const_vec(lg(sprk2), cgetg(1,t_MAT))
    3599         259 :               : ZM_ZMV_mul(vecslice(U, l1, nbgen), U2);
    3600         259 :     U = shallowconcat(U1, U2);
    3601             :   }
    3602             :   else
    3603           0 :     U = const_vec(lg(sprk), cgetg(1,t_MAT));
    3604             : 
    3605         259 :   if (gen)
    3606             :   {
    3607         259 :     GEN uv = zkchinese1init2(nf, I2, I1, x);
    3608         518 :     gen = shallowconcat(zkVchinese1(gel(uv,1), abgrp_get_gen(G1)),
    3609         259 :                         zkVchinese1(gel(uv,2), abgrp_get_gen(G2)));
    3610             :   }
    3611         259 :   sarch = bid_get_sarch(bid1); /* trivial */
    3612         259 :   y = bid_grp(nf, u1, cyc, gen, x, sarch);
    3613         259 :   x = mkvec2(x, bid_get_arch(bid1));
    3614         259 :   y = mkvec5(x, y, mkvec2(fa, fa2), mkvec2(sprk, sarch), U);
    3615         259 :   return gerepilecopy(av,y);
    3616             : }
    3617             : 
    3618             : typedef struct _ideal_data {
    3619             :   GEN nf, emb, L, pr, prL, sgnU, archp;
    3620             : } ideal_data;
    3621             : 
    3622             : /* z <- ( z | f(v[i])_{i=1..#v} ) */
    3623             : static void
    3624      758324 : concat_join(GEN *pz, GEN v, GEN (*f)(ideal_data*,GEN), ideal_data *data)
    3625             : {
    3626      758324 :   long i, nz, lv = lg(v);
    3627             :   GEN z, Z;
    3628      758324 :   if (lv == 1) return;
    3629      222811 :   z = *pz; nz = lg(z)-1;
    3630      222811 :   *pz = Z = cgetg(lv + nz, typ(z));
    3631      371643 :   for (i = 1; i <=nz; i++) gel(Z,i) = gel(z,i);
    3632      223296 :   Z += nz;
    3633      491935 :   for (i = 1; i < lv; i++) gel(Z,i) = f(data, gel(v,i));
    3634             : }
    3635             : static GEN
    3636         469 : join_idealinit(ideal_data *D, GEN x)
    3637         469 : { return join_bid(D->nf, x, D->prL); }
    3638             : static GEN
    3639      268422 : join_ideal(ideal_data *D, GEN x)
    3640      268422 : { return idealmulpowprime(D->nf, x, D->pr, D->L); }
    3641             : static GEN
    3642         448 : join_unit(ideal_data *D, GEN x)
    3643             : {
    3644         448 :   GEN bid = join_idealinit(D, gel(x,1)), u = gel(x,2), v = mkvec(D->emb);
    3645         448 :   if (lg(u) != 1) v = shallowconcat(u, v);
    3646         448 :   return mkvec2(bid, v);
    3647             : }
    3648             : 
    3649             : GEN
    3650          49 : log_prk_units_init(GEN bnf)
    3651             : {
    3652          49 :   GEN U = bnf_has_fu(bnf);
    3653          49 :   if (U) U = matalgtobasis(bnf_get_nf(bnf), U);
    3654          21 :   else if (!(U = bnf_compactfu_mat(bnf))) (void)bnf_build_units(bnf);
    3655          49 :   return mkvec2(bnf_get_tuU(bnf), U);
    3656             : }
    3657             : /*  flag & nf_GEN : generators, otherwise no
    3658             :  *  flag &2 : units, otherwise no
    3659             :  *  flag &4 : ideals in HNF, otherwise bid
    3660             :  *  flag &8 : omit ideals which cannot be conductors (pr^1 with Npr=2) */
    3661             : static GEN
    3662       11333 : Ideallist(GEN bnf, ulong bound, long flag)
    3663             : {
    3664       11333 :   const long do_units = flag & 2, big_id = !(flag & 4), cond = flag & 8;
    3665       11333 :   const long istar_flag = (flag & nf_GEN) | nf_INIT;
    3666             :   pari_sp av;
    3667             :   long i, j;
    3668       11333 :   GEN nf, z, p, fa, id, BOUND, U, empty = cgetg(1,t_VEC);
    3669             :   forprime_t S;
    3670             :   ideal_data ID;
    3671             :   GEN (*join_z)(ideal_data*, GEN);
    3672             : 
    3673       11333 :   if (do_units)
    3674             :   {
    3675          21 :     bnf = checkbnf(bnf);
    3676          21 :     nf = bnf_get_nf(bnf);
    3677          21 :     join_z = &join_unit;
    3678             :   }
    3679             :   else
    3680             :   {
    3681       11312 :     nf = checknf(bnf);
    3682       11312 :     join_z = big_id? &join_idealinit: &join_ideal;
    3683             :   }
    3684       11333 :   if ((long)bound <= 0) return empty;
    3685       11333 :   id = matid(nf_get_degree(nf));
    3686       11333 :   if (big_id) id = Idealstar(nf,id, istar_flag);
    3687             : 
    3688             :   /* z[i] will contain all "objects" of norm i. Depending on flag, this means
    3689             :    * an ideal, a bid, or a couple [bid, log(units)]. Such objects are stored
    3690             :    * in vectors, computed one primary component at a time; join_z
    3691             :    * reconstructs the global object */
    3692       11333 :   BOUND = utoipos(bound);
    3693       11333 :   z = const_vec(bound, empty);
    3694       11333 :   U = do_units? log_prk_units_init(bnf): NULL;
    3695       11333 :   gel(z,1) = mkvec(U? mkvec2(id, empty): id);
    3696       11333 :   ID.nf = nf;
    3697             : 
    3698       11333 :   p = cgetipos(3);
    3699       11333 :   u_forprime_init(&S, 2, bound);
    3700       11333 :   av = avma;
    3701       92665 :   while ((p[2] = u_forprime_next(&S)))
    3702             :   {
    3703       81616 :     if (DEBUGLEVEL>1) err_printf("%ld ",p[2]);
    3704       81616 :     fa = idealprimedec_limit_norm(nf, p, BOUND);
    3705      162844 :     for (j = 1; j < lg(fa); j++)
    3706             :     {
    3707       81512 :       GEN pr = gel(fa,j), z2 = leafcopy(z);
    3708       81515 :       ulong Q, q = upr_norm(pr);
    3709             :       long l;
    3710       81515 :       ID.pr = ID.prL = pr;
    3711       81515 :       if (cond && q == 2) { l = 2; Q = 4; } else { l = 1; Q = q; }
    3712      184269 :       for (; Q <= bound; l++, Q *= q) /* add pr^l */
    3713             :       {
    3714             :         ulong iQ;
    3715      103044 :         ID.L = utoipos(l);
    3716      103038 :         if (big_id) {
    3717         210 :           ID.prL = Idealstarprk(nf, pr, l, istar_flag);
    3718         210 :           if (U)
    3719         189 :             ID.emb = Q == 2? empty
    3720         189 :                            : log_prk_units(nf, U, gel(bid_get_sprk(ID.prL),1));
    3721             :         }
    3722      861100 :         for (iQ = Q,i = 1; iQ <= bound; iQ += Q,i++)
    3723      758346 :           concat_join(&gel(z,iQ), gel(z2,i), join_z, &ID);
    3724             :       }
    3725             :     }
    3726       81332 :     if (gc_needed(av,1))
    3727             :     {
    3728          18 :       if(DEBUGMEM>1) pari_warn(warnmem,"Ideallist");
    3729          18 :       z = gerepilecopy(av, z);
    3730             :     }
    3731             :   }
    3732       11333 :   return z;
    3733             : }
    3734             : GEN
    3735          63 : gideallist(GEN bnf, GEN B, long flag)
    3736             : {
    3737          63 :   pari_sp av = avma;
    3738          63 :   if (typ(B) != t_INT)
    3739             :   {
    3740           0 :     B = gfloor(B);
    3741           0 :     if (typ(B) != t_INT) pari_err_TYPE("ideallist", B);
    3742           0 :     if (signe(B) < 0) B = gen_0;
    3743             :   }
    3744          63 :   if (signe(B) < 0)
    3745             :   {
    3746          28 :     if (flag != 4) pari_err_IMPL("ideallist with bid for single norm");
    3747          28 :     return gerepilecopy(av, ideals_by_norm(checknf(bnf), absi(B)));
    3748             :   }
    3749          35 :   if (flag < 0 || flag > 15) pari_err_FLAG("ideallist");
    3750          35 :   return gerepilecopy(av, Ideallist(bnf, itou(B), flag));
    3751             : }
    3752             : GEN
    3753       11298 : ideallist0(GEN bnf, long bound, long flag)
    3754             : {
    3755       11298 :   pari_sp av = avma;
    3756       11298 :   if (flag < 0 || flag > 15) pari_err_FLAG("ideallist");
    3757       11298 :   return gerepilecopy(av, Ideallist(bnf, bound, flag));
    3758             : }
    3759             : GEN
    3760       10563 : ideallist(GEN bnf,long bound) { return ideallist0(bnf,bound,4); }
    3761             : 
    3762             : /* bid = for module m (without arch. part), arch = archimedean part.
    3763             :  * Output: bid for [m,arch] */
    3764             : static GEN
    3765          42 : join_bid_arch(GEN nf, GEN bid, GEN archp)
    3766             : {
    3767          42 :   pari_sp av = avma;
    3768             :   GEN G, U;
    3769          42 :   GEN sprk, cyc, y, u1 = NULL, x, sarch, gen;
    3770             : 
    3771          42 :   checkbid(bid);
    3772          42 :   G = bid_get_grp(bid);
    3773          42 :   x = bid_get_ideal(bid);
    3774          42 :   sarch = nfarchstar(nf, bid_get_ideal(bid), archp);
    3775          42 :   sprk = bid_get_sprk(bid);
    3776             : 
    3777          42 :   gen = (lg(G)>3)? gel(G,3): NULL;
    3778          42 :   cyc = diagonal_shallow(shallowconcat(gel(G,2), sarch_get_cyc(sarch)));
    3779          42 :   cyc = ZM_snf_group(cyc, &U, gen? &u1: NULL);
    3780          42 :   y = bid_grp(nf, u1, cyc, gen, x, sarch);
    3781          42 :   U = split_U(U, sprk);
    3782          42 :   y = mkvec5(mkvec2(x, archp), y, gel(bid,3), mkvec2(sprk, sarch), U);
    3783          42 :   return gerepilecopy(av,y);
    3784             : }
    3785             : static GEN
    3786          42 : join_arch(ideal_data *D, GEN x) {
    3787          42 :   return join_bid_arch(D->nf, x, D->archp);
    3788             : }
    3789             : static GEN
    3790          14 : join_archunit(ideal_data *D, GEN x) {
    3791          14 :   GEN bid = join_arch(D, gel(x,1)), u = gel(x,2), v = mkvec(D->emb);
    3792          14 :   if (lg(u) != 1) v = shallowconcat(u, v);
    3793          14 :   return mkvec2(bid, v);
    3794             : }
    3795             : 
    3796             : /* L from ideallist, add archimedean part */
    3797             : GEN
    3798          14 : ideallistarch(GEN bnf, GEN L, GEN arch)
    3799             : {
    3800             :   pari_sp av;
    3801          14 :   long i, j, l = lg(L), lz;
    3802             :   GEN v, z, V, nf;
    3803             :   ideal_data ID;
    3804             :   GEN (*join_z)(ideal_data*, GEN);
    3805             : 
    3806          14 :   if (typ(L) != t_VEC) pari_err_TYPE("ideallistarch",L);
    3807          14 :   if (l == 1) return cgetg(1,t_VEC);
    3808          14 :   z = gel(L,1);
    3809          14 :   if (typ(z) != t_VEC) pari_err_TYPE("ideallistarch",z);
    3810          14 :   z = gel(z,1); /* either a bid or [bid,U] */
    3811          14 :   ID.archp = vec01_to_indices(arch);
    3812          14 :   if (lg(z) == 3)
    3813             :   { /* [bid,U]: do units */
    3814           7 :     bnf = checkbnf(bnf); nf = bnf_get_nf(bnf);
    3815           7 :     if (typ(z) != t_VEC) pari_err_TYPE("ideallistarch",z);
    3816           7 :     ID.emb = zm_to_ZM( rowpermute(nfsign_units(bnf,NULL,1), ID.archp) );
    3817           7 :     join_z = &join_archunit;
    3818             :   }
    3819             :   else
    3820             :   {
    3821           7 :     join_z = &join_arch;
    3822           7 :     nf = checknf(bnf);
    3823             :   }
    3824          14 :   ID.nf = nf;
    3825          14 :   av = avma; V = cgetg(l, t_VEC);
    3826          63 :   for (i = 1; i < l; i++)
    3827             :   {
    3828          49 :     z = gel(L,i); lz = lg(z);
    3829          49 :     gel(V,i) = v = cgetg(lz,t_VEC);
    3830          91 :     for (j=1; j<lz; j++) gel(v,j) = join_z(&ID, gel(z,j));
    3831             :   }
    3832          14 :   return gerepilecopy(av,V);
    3833             : }

Generated by: LCOV version 1.16