Bill Allombert on Fri, 28 Mar 2025 10:56:01 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: question on converting general cubic equations to Weierstrass format
|
- To: pari-users <pari-users@pari.math.u-bordeaux.fr>
- Subject: Re: question on converting general cubic equations to Weierstrass format
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Fri, 28 Mar 2025 10:55:57 +0100
- Delivery-date: Fri, 28 Mar 2025 10:56:01 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1743155759; bh=FLhkozMhsnCLBXXNKuRmNwct8suFybdg3HIdxA5nkc0=; h=Date:From:To:Subject:References:In-Reply-To:From; b=YYfZAXhQ0FCewf24sZo+06Hnf41drSf+PEOkTYZAG5oE7aT4EBZQ6afzGRDOp3R1j 2Xz8DKcgtcN75g/rp+e0OwsTKMeJg99nS2z4tZx3c1/IaHgVof2v+4OmrTnWq/dBOM hytnB2xOFllp7KnSUFHy13gAEXk0D0uXf+fcRC/PviRXePLlTEr5L1xFtOqCpak/UR gYLhec0FgBRIVYSJp6FktmG+lISSdNK4Bi4/mZd2c4PUVlzspwT1v0zxKfUk0Zshlb p3b3SUpHb8LUxgYXcNrmcGruRidKfKn+iidQx2TKHBH4vh0Y3eCVlCavi9GYSDXSSz //r5HaRM3O0pR/QAhVtFGNHNB+LfmsH5NO5PqM41L4XXb94tyt6FCGFLGnqHLuCcjE gcFULHjyr+14LgR/Zem3N1Z/2j9LTysVrO83JbP6ECVwX2mzvPp6etC7efvCmTv6qG l4/Ph54wCm4xno2AJwQrCmD/FtQMwwY3u8ygfaGMHULXP4ovJge7wymtYvdu2v2iH0 IJw+NCr8h94l3Q/iNPXMS6MyUj2u9BdVweM4sOt4Q7Sdvf+v3QywYrwCmWGRkrYsOA bHAVWW9jc1Q7PVEdDeJ30+rrctfTgmCpOHDbPE6wlZD0jeLB5LffpTWIrE0tf6ZS7X cFlulUXh7G9PFnimr5wyi/9U=
- In-reply-to: <b9eb04ab-048a-4ef8-9b6e-87cdf91ae2e3@gmail.com>
- Mail-followup-to: pari-users <pari-users@pari.math.u-bordeaux.fr>
- References: <b9eb04ab-048a-4ef8-9b6e-87cdf91ae2e3@gmail.com>
On Thu, Mar 27, 2025 at 08:35:33PM -0700, American Citizen wrote:
> Recent changes in GP-Pari has unfortunately rendered my code relating to
> cuboids (body/edge/face) non-functional as testing has found out today.
Which changes ? Are you sure it is not a variable ordering issue ?
Try using x and y instead of X and Y.
> For example, exploring body cuboids, I have the general cubic equation
> (where a,b is found from a Pythagorean ratio r, such as r = 3/4, i.e. a=3
> and b=4 where a is the numerator of r and b is the denominator of r.
>
> B(a,b) = 0 * X^3 - 4*a*b * X^2*Y + 2*(a^2-b^2) * X*Y^2 + 0 * Y^3 + 0 * X^2*Z
> + 2*(b^2+2*a*b-a^2) * X*Y*Z + 0 * Y^2*Z + 0 * X*Z^2 + 0 * Y*Z^2 + 0 * Z^3
ellfromeqn expect an affine model, so you need to set Z to 1.
But this is not a genus-1 curve.
The Weierstrass form is [-2*a^2+4*b*a+2*b^2,0,0,0,0]
Cheers,
Bill.