American Citizen on Fri, 28 Mar 2025 04:35:40 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
question on converting general cubic equations to Weierstrass format
|
- To: pari-users <pari-users@pari.math.u-bordeaux.fr>
- Subject: question on converting general cubic equations to Weierstrass format
- From: American Citizen <website.reader3@gmail.com>
- Date: Thu, 27 Mar 2025 20:35:33 -0700
- Delivery-date: Fri, 28 Mar 2025 04:35:40 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20230601; t=1743132936; x=1743737736; darn=pari.math.u-bordeaux.fr; h=content-transfer-encoding:subject:from:to:content-language :user-agent:mime-version:date:message-id:from:to:cc:subject:date :message-id:reply-to; bh=BsZH+qrdWL4WamwmfYjN2l8XeaoVW6wnbGyrGIQm63A=; b=MO7gtu5elN2bKLgiDziJ221K1lZ6l0PMYVt+WzIH0LBNDZlEutYioazv/63+XhDXVv nNYSNOdRiJXAROmUtiauAnnr95fKzDbXKXKSrKyNjmDRZ6xloQwhk+OJb7rWHBVFiF1x SFO6fCNlGs7iHVx+yxoICUfLzSZ/AnURFidRHmyUoLesgW9RIdW5vGVwE0OJOYiI8qaR 048U+5c2k5H1Z1nbMGU/bkIeYuitF50d+lYHJsbOrSYcG6u8kWBIUMyQn1ptL+s3L/Om KaeRgEzMGG+GwacSBAXOQ+/5aG3pihLnoojjrUuebJRvVEUsGSHJWIbyXKVYdqz2kV6P V69A==
- User-agent: Mozilla Thunderbird
Recent changes in GP-Pari has unfortunately rendered my code relating to
cuboids (body/edge/face) non-functional as testing has found out today.
For example, exploring body cuboids, I have the general cubic equation
(where a,b is found from a Pythagorean ratio r, such as r = 3/4, i.e.
a=3 and b=4 where a is the numerator of r and b is the denominator of r.
B(a,b) = 0 * X^3 - 4*a*b * X^2*Y + 2*(a^2-b^2) * X*Y^2 + 0 * Y^3 + 0 *
X^2*Z + 2*(b^2+2*a*b-a^2) * X*Y*Z + 0 * Y^2*Z + 0 * X*Z^2 + 0 * Y*Z^2 +
0 * Z^3
I would like to find the Weierstrass normal form for this equation, i.e
[a1,a2,a3,a4,a6] where y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6
For the edge and face cuboids I also have
E(a,b) = a*v*(u*u+1) - b*u*(v*v+1) = 0
F(a,b) = (a^2+b^2)*u*(v^2-1) - 2*a*b*(u^2-1)*v
where a,b are given parameters and u,v are the general variables.
I am seeking the Weierstrass normal form for all 3 equations, B(a,b),
E(a,b) and F(a,b)
Randall