| Karim Belabas on Thu, 24 Jan 2013 15:03:50 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Re : Field inclusion problem |
* Ewan Delanoy [2013-01-24 14:51]:
> > nffactor(B, A) would factor A(X) over the number field Q[b] / (B(b)).
> > ( a few seconds on such small inputs )
>
> I tried that and obtained the following output :
>
>
> ? nffactor(polynomial_called_b,polynomial_called_a)
> *** at top-level: nffactor(polynomial_ca
> *** ^--------------------
> *** nffactor: incorrect polynomial in rnf function.
> *** Break loop: type 'break' to go back to GP
>
> I suppose itâs no use to do a âmy_field=nfinit(polynomial_called_b)â first ? The computation would be prohibitively long.
The problem is variable priorities. The variable of the polynomial
defining the "base field" must have *lower* priority then the variable
of the polynomial to be factored. See ??nffactor
? A = x^2+1;
? B = y^2+1;
? nffactor(A,B)
*** at top-level: nffactor(A,B)
*** ^-------------
*** nffactor: incorrect priority in nffactor: variable y >= x
*** Break loop: type 'break' to go back to GP prompt
? nffactor(B,A)
[x + Mod(-y, y^2 + 1) 1]
[ x + Mod(y, y^2 + 1) 1]
N.B. This is 2.6.*, the error messages in 2.5.* are a little less helpful :-)
Cheers,
K.B.
--
Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17
Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50
351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/
F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP]
`