Revision 2b5cf6b6330b6c3159338e3e0292d4a6d88db53e (click the page title to view the current version)

Front Page

Changes from 2b5cf6b6330b6c3159338e3e0292d4a6d88db53e to 27640d8d476e83f4c2b709e461963629baa3b836

# Previous Ateliers:
[2015 (Bordeaux)](Atelier%202015),
[2016 (Grenoble)](Atelier%202016),
[2017 (Lyon)](Atelier%202017)
[2017b (Clermont-Ferrand)](Atelier%202017b)
[2017c (Oujda)](Atelier%202017c)
[2018 (Besançon)](Atelier%202018)
[2018b (Roma)](Atelier%202018b)
[2019 (Bordeaux)](Atelier%202019)
[2019b (Roma)](Atelier%202019b)
[2020 (Grenoble)](Atelier%202020)
[2021b (Oujda)](Atelier%202021b)
[2022 (Besançon)](Atelier%202022)
[2023 (CIRM)](Atelier%202023)
[2024 (Lyon)](Atelier%202024)
[2024b (Roma)](Atelier%202024b)
[2025 (Orsay)](Atelier%202025)
[LIBPARI2025 (Bordeaux)](Libpari%202025)

# [Welcome to Atelier PARI/GP 2026 (Bordeaux)](https://pari.math.u-bordeaux.fr/Events/PARI2026/)

[doctesting](doc2026)

## Topics

- Eric      : local units mod p and unramified extensions
- Haetham   : snf forms etc.
- Bill      : helping around
- Salma     : doctesting, elliptic curves over number fields
- Salma     : doctesting, elliptic curves over number fields, crypto, CRT
- Rayane    : presentations by coverings
- Safia     : doctesting, using git
- Daniel    : snf stuff
- Karim     :
- Nicolas B.: congruences between modular forms, CM modular forms
- Zakariae  : Eisenstein series attached to quadratic fields, mf package
- Alina     : factorisation of Hecke L-functions in terms of Dirichlet L-functions
- Henri     : helping around, modular forms from quadratic fields
- Henri     : helping around, modular forms from quadratic fields, improving mfshimura
- Mateo     : computing coefficients of generating series
- Alejandro : Voronoi complex
- Vincent   :
- Philippe  : cohomology of arithmetic groups
- Tim       : trying things, reading doc, finite topological spaces
- Andreas   : scheme bindings for the pari library
- Andreas   : scheme bindings for the pari library, reading doc
- Fabrice   : class group computations with norm relations
- Sam       : 3 and 5 descent, coverings
- Jean      :
- Vasily    :
- Pengju    : charpoly of Frobenius of varieties, p-adic regulators
- David     : helping, doctesting, tutorials, p-adic extensions
- Tao       : reading tutorials, SNF
- Gabriel   : Voronoi's algorithm for Hermitian forms
- Rob       : doctesting, p-adic polylogs
- Fredrik   :
- Kiran     : joining others, hypergeometric motives
- Rob       : doctesting (bnfinit), p-adic polylogs
- Fredrik   : benchmarking primality tests
- Kiran     : joining others, hypergeometric motives, abelianbnf
- Bernard   :
- Antoine   : polynomial factorisation over Fp
- Pierre L. :
- Afonso    : discrete gaussian in lattices
- Afonso    : discrete gaussian in lattices, testing
- Nicolas M.: algebraic curves, looking for volunteers to help
- Thibaut   : doctesting, theta characteristics of jacobians
- Pascal    : artin representations
- Pierre M. : class field theory, p-adic fields
- Pascal    : artin representations, mfsaturate
- Pierre M. : class field theory, p-adic fields, bnfinit
- Aurel     : helping around
- Baptiste  : modular forms, congruences, class field theory
- Alice     : S-units with norm relations
- Baptiste  : modular forms, congruences, class field theory, projective Artin representations
- Alice     : S-units with norm relations, bnfinit and residue of the Dedekind zeta function
- Bernadette: doctesting, reading
- Léo       :
- Fotios    : doctesting, action on additive structure of ideals
- Damien    : experiments on formulas for elliptic curves
- Marine    : doctesting
- Denis     : Mahler measure of polynomials. helping around.
- Julien    : elliptic curves over finite fields and quaternion algebras
- Denis     : Mahler measure of polynomials: 1 variable, 2 variables; helping around
- Julien    : elliptic curves over finite fields and quaternion algebras; localising quaternion algebras
- Giacomo   : elliptic curves over number fields
- Alexander : automorphism groups of fields, alnuth, second cohomology for polycyclic groups in GAP
- Wenwen    : Verify the correctness of reduction between RLWE and MP-LWE