Modular forms, modular symbols

(PARI-GP version 2.10.0)

Modular Forms

To be completed later.

Modular Symbols

Let $G = \Gamma_0(N)$, $V_k = \mathbf{Q}[X,Y]_{k-2}$. We let $\Delta = \text{Div}^0(\mathbf{P}^1(\mathbf{Q}))$; an element of Δ is a *path* between cusps of $X_0(N)$ via the identification $[b] - [a] \rightarrow$ the path from *a* to *b*. A path is coded by the pair [a,b], where *a*, *b* are rationals or **oo**, denoting the point at infinity (1:0).

Let $\mathbf{M}_k(G) = \operatorname{Hom}_G(\Delta, V_k) \simeq H^1_c(X_0(G), V_k)$; an element of $\mathbf{M}_k(G)$ is a V_k -valued modular symbol. There is a natural decomposition $\mathbf{M}_k(G) = \mathbf{M}_k(G)^+ \oplus \mathbf{M}_k(G)^-$ under the action of the * involution, induced by complex conjugation. The msinit function computes either \mathbf{M}_k ($\varepsilon = 0$) or its \pm -parts ($\varepsilon = \pm 1$) and fixes a minimal set of $\mathbf{Z}[G]$ -generators (g_i) of Δ .

initialize $M = \mathbf{M}_k(\Gamma_0(N))^{\varepsilon}$ the level M the weight k the sign ε	$\begin{array}{l} \texttt{msinit}(N,k,\{\varepsilon=0\})\\ \texttt{msgetlevel}(M)\\ \texttt{msgetweight}(M)\\ \texttt{msgetsign}(M) \end{array}$	
$\mathbf{Z}[G]$ -generators and relations for Δ Decompose $p = [a, b]$ on the (g_i)	mspathgens(M) mspathlog(M, p)	
Create a symbol Eisenstein symbol attached to cusp c Cuspidal symbol attached to E/\mathbf{Q} symbol having given Hecke eigenvalues is s a symbol ? the list of all $s(g_i)$ evaluate symbol s on path $p = [a, b]$ Operators	$\begin{array}{l} \texttt{msfromcusp}(M,c)\\ \texttt{msfromell}(E)\\ \texttt{msfromhecke}(M,v,\{H\})\\ \texttt{msissymbol}(M,s)\\ \texttt{mseval}(M,s)\\ \texttt{mseval}(M,s,p) \end{array}$	
An operator is given by a matrix of a fixed Q -basis. H , if given, is a stable Q -subspace of $\mathbf{M}_k(G)$: operator is restricted to H .		

matrix of Hecke operator T_p or U_p	$\mathtt{mshecke}(M,p,\{H\})$
matrix of Atkin-Lehner w_Q	$msatkinlehner(M, Q\{H\})$
matrix of the $*$ involution	$msstar(M, \{H\})$

Subspaces

A subspace is given by a structure allowing quick projection and restriction of linear operators. Its fist component is a matrix with integer coefficients whose columns for a **Q**-basis. If H is a Heckestable subspace of $M_k(G)^+$ or $M_k(G)^-$, it can be split into a direct sum of Hecke-simple subspaces. To a simple subspace corresponds a single normalized newform $\sum_n a_n q^n$.

cuspidal subspace $S_k(G)^{\varepsilon}$	$\mathtt{mscuspidal}(M)$
Eisenstein subspace $E_k(G)^{\varepsilon}$	${\tt mseisenstein}(M)$
new part of $S_k(G)^{\varepsilon}$	$\mathtt{msnew}(M)$
split H into simple subspaces (of dim $\leq d$)	$mssplit(M, H, \{d\})$
(a_1,\ldots,a_B) for attached newform msc	$expansion(M, H, \{B\})$

Overconvergent symbols and p-adic L functions

Let M be a full modular symbol space given by msinit and p be a prime. To a classical modular symbol ϕ of level N ($v_p(N) \leq 1$), which is an eigenvector for T_p with non-zero eigenvalue a_p , we can attach a p-adic L-function L_p . The function L_p is defined on continuous characters of $\operatorname{Gal}(\mathbf{Q}(\mu_p\infty)/\mathbf{Q})$; in GP we allow characters $\langle \chi \rangle^{s_1} \tau^{s_2}$, where (s_1, s_2) are integers, τ is the Teichmüller character and χ is the cyclotomic character.

The symbol ϕ can be lifted to an *overconvergent* symbol Φ , taking values in spaces of *p*-adic distributions (represented in GP by a list of moments modulo p^n).

mspadicinit precomputes data used to lift symbols. If flag is given, it speeds up the computation by assuming that $v_p(a_p) = 0$ if flag = 0 (fastest), and that $v_p(a_p) \ge flag$ otherwise (faster as flag increases).

mspadicmoments computes distributions mu attached to Φ allowing to compute L_p to high accuracy.

I P O	·
initialize Mp to lift symbols	$mspadicinit(M, p, n, \{flag\})$
lift symbol ϕ	$\mathtt{mstooms}(Mp,\phi)$
eval over convergent symbol Φ	on path p msomseval (Mp, Φ, p)
mu for p -adic L -functions	$mspadicmoments(Mp, S, \{D = 1\})$
$L_p^{(r)}(\chi^s), s = [s_1, s_2]$	$\texttt{mspadicL}(mu, \{s=0\}, \{r=0\})$
$\hat{L}_p(\tau^i)(x)$	${\tt mspadicseries}(mu, \{i=0\})$

Based on an earlier version by Joseph H. Silverman January 2017 v2.30. Copyright © 2017 K. Belabas Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to (Karim.Belabas@math.u-bordeaux.fr)