
Modular forms, modular symbols
(PARI-GP version 2.10.0)

Modular Forms
To be completed later.

Modular Symbols
Let G = Γ0(N), Vk = Q[X,Y ]k−2. We let ∆ = Div0(P1(Q)); an
element of ∆ is a path between cusps of X0(N) via the identifica-
tion [b]− [a]→ the path from a to b. A path is coded by the pair
[a, b], where a, b are rationals or oo, denoting the point at infinity
(1 : 0).

Let Mk(G) = HomG(∆, Vk) ' H1
c (X0(G), Vk); an element of

Mk(G) is a Vk-valued modular symbol . There is a natural decom-
position Mk(G) = Mk(G)+ ⊕Mk(G)− under the action of the ∗
involution, induced by complex conjugation. The msinit function
computes either Mk (ε = 0) or its ±-parts (ε = ±1) and fixes a
minimal set of Z[G]-generators (gi) of ∆.

initialize M = Mk(Γ0(N))ε msinit(N, k, {ε = 0})
the level M msgetlevel(M)
the weight k msgetweight(M)
the sign ε msgetsign(M)

Z[G]-generators and relations for ∆ mspathgens(M)
Decompose p = [a, b] on the (gi) mspathlog(M,p)

Create a symbol
Eisenstein symbol attached to cusp c msfromcusp(M, c)
Cuspidal symbol attached to E/Q msfromell(E)
symbol having given Hecke eigenvalues msfromhecke(M, v, {H})
is s a symbol ? msissymbol(M, s)
the list of all s(gi) mseval(M, s)
evaluate symbol s on path p = [a, b] mseval(M, s, p)
Operators
An operator is given by a matrix of a fixed Q-basis. H, if given, is
a stable Q-subspace of Mk(G): operator is restricted to H.
matrix of Hecke operator Tp or Up mshecke(M,p, {H})
matrix of Atkin-Lehner wQ msatkinlehner(M,Q{H})
matrix of the ∗ involution msstar(M, {H})
Subspaces
A subspace is given by a structure allowing quick projection and
restriction of linear operators. Its fist component is a matrix with
integer coefficients whose columns for a Q-basis. If H is a Hecke-
stable subspace of Mk(G)+ or Mk(G)−, it can be split into a direct
sum of Hecke-simple subspaces. To a simple subspace corresponds
a single normalized newform

∑
n anq

n.
cuspidal subspace Sk(G)ε mscuspidal(M)
Eisenstein subspace Ek(G)ε mseisenstein(M)
new part of Sk(G)ε msnew(M)
split H into simple subspaces (of dim ≤ d) mssplit(M,H, {d})
(a1, . . . , aB) for attached newform msqexpansion(M,H, {B})

Overconvergent symbols and p-adic L functions
Let M be a full modular symbol space given by msinit and p be
a prime. To a classical modular symbol φ of level N (vp(N) ≤ 1),
which is an eigenvector for Tp with non-zero eigenvalue ap, we can
attach a p-adic L-function Lp. The function Lp is defined on con-
tinuous characters of Gal(Q(µp∞ )/Q); in GP we allow characters
〈χ〉s1τs2 , where (s1, s2) are integers, τ is the Teichmüller character
and χ is the cyclotomic character.
The symbol φ can be lifted to an overconvergent symbol Φ, taking
values in spaces of p-adic distributions (represented in GP by a list
of moments modulo pn).
mspadicinit precomputes data used to lift symbols. If flag is given,
it speeds up the computation by assuming that vp(ap) = 0 if
flag = 0 (fastest), and that vp(ap) ≥ flag otherwise (faster as
flag increases).
mspadicmoments computes distributions mu attached to Φ allowing
to compute Lp to high accuracy.
initialize Mp to lift symbols mspadicinit(M,p, n, {flag})
lift symbol φ mstooms(Mp, φ)
eval overconvergent symbol Φ on path p msomseval(Mp,Φ, p)
mu for p-adic L-functions mspadicmoments(Mp, S, {D = 1})
L
(r)
p (χs), s = [s1, s2] mspadicL(mu, {s = 0}, {r = 0})

L̂p(τ i)(x) mspadicseries(mu, {i = 0})
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