Modular forms, modular symbols

(PARI-GP version 2.17.1)

Modular Forms

Dirichlet characters

Characters are encoded in three different ways:

- a t_INT $D \equiv 0, 1 \mod 4$: the quadratic character (D/\cdot) ;
- a t_INTMOD Mod(m,q), $m \in (\mathbf{Z}/q)^*$ using a canonical bijection with the dual group (the Conrey character $\chi_q(m,\cdot)$);
- a pair [G, chi], where G = znstar(q, 1) encodes $(\mathbf{Z}/q\mathbf{Z})^* =$ $\sum_{i \leq k} (\mathbf{Z}/d_i \mathbf{Z}) \cdot g_i$ and the vector $chi = [c_1, \dots, c_k]$ encodes the character such that $\chi(q_i) = e(c_i/d_i)$.

```
initialize G = (\mathbf{Z}/a\mathbf{Z})^*
                                                   G = znstar(q, 1)
convert datum D to [G, \chi]
                                                   znchar(D)
Galois orbits of Dirichlet characters
                                                    chargalois(G)
```

Spaces of modular forms

Arguments of the form $[N, k, \chi]$ give the level weight and nebentypus y: y can be omitted: [N, k] means trivial y

bus χ , χ can be offitted. [10, k] means	univial χ .
nitialize $S_k^{\text{new}}(\Gamma_0(N), \chi)$	$\mathtt{mfinit}([N,k,\chi],0)$
nitialize $S_k(\Gamma_0(N), \chi)$	$\mathtt{mfinit}([N,k,\chi],1)$
nitialize $S_k^{\text{old}}(\Gamma_0(N), \chi)$	$\mathtt{mfinit}([N,k,\chi],2)$
nitialize $E_k(\Gamma_0(N), \chi)$	$\mathtt{mfinit}([N,k,\chi],3)$
nitialize $M_k(\Gamma_0(N), \chi)$	${ t mfinit}([N,k,\chi])$
ind eigenforms	${ t mfsplit}(M)$
statistics on self-growing caches	get.cache()

We let M = mfinit(...) denote a modular space

m = m = m = m = m = m = m = m = m = m =	aiai space.
describe the space M	${ t mfdescribe}(M)$
recover (N, k, χ)	${\tt mfparams}(M)$
\dots the space identifier (0 to 4)	${\tt mfspace}(M)$
\dots the dimension of M over \mathbf{C}	$\mathtt{mfdim}(M)$
a C-basis (f_i) of M	${ t mfbasis}(M)$
a basis (F_i) of eigenforms	${\tt mfeigenbasis}(M)$
polynomials defining $\mathbf{Q}(\chi)(F_j)/\mathbf{Q}(\chi)$	$\chi)$ mffields (M)
matrix of Hecke operator T_n on (f_i)	${\tt mfheckemat}(M,n)$
eigenvalues of w_Q	${ t mfatkineigenvalues}(M,Q)$
basis of period poynomials for weight h	k mfperiodpolbasis (k)
basis of the Kohnen +-space	${ t mfkohnenbasis}(M)$
new space and eigenforms	${\tt mfkohneneigenbasis}(M,b)$

isomorphism $S_k^+(4N,\chi) \to S_{2k-1}(N,\chi^2)$ mfkohnenbijection(M) Useful data can also be obtained a priori, without computing a

complete modular space:	
dimension of $S_k^{\text{new}}(\Gamma_0(N), \chi)$	$\mathtt{mfdim}([N,k,\chi])$
dimension of $S_k(\Gamma_0(N), \chi)$	$\mathtt{mfdim}([N,k,\chi],1)$
dimension of $S_k^{\text{old}}(\Gamma_0(N),\chi)$	$\mathtt{mfdim}([N,k,\chi],2)$
dimension of $M_k(\Gamma_0(N), \chi)$	$\mathtt{mfdim}([N,k,\chi],3)$
dimension of $E_k(\Gamma_0(N), \chi)$	$\mathtt{mfdim}([N,k,\chi],4)$
Sturm's bound for $M_k(\Gamma_0(N), \chi)$	${\tt mfsturm}(N,k)$
$\Gamma_0(N)$ cosets	

list of right $\Gamma_0(N)$ cosets	${\tt mfcosets}(N)$
identify coset a matrix belongs to	mftocoset

Cusps

a cusp is given by a rational number or oo.

]	ists of cusps of $\Gamma_0(N)$	${ t mfcusps}(N)$
1	number of cusps of $\Gamma_0(N)$	${\tt mfnumcusps}(N)$
٦	width of cusp c of $\Gamma_0(N)$	${ t mfcuspwidth}(N,c)$
i	s cusp c regular for $M_k(\Gamma_0(N), \chi)$?	$mfcuspisregular([N, k, \chi], c)$

Create an individual modular form

Besides mfbasis and mfeigenbasis, an individual modular form can be identified by a few coefficients.

modular form from coefficients	mftobasis(mf, vec)
There are also many predefined ones:	
Eisenstein series E_k on $Sl_2(\mathbf{Z})$	$\mathtt{mfEk}(k)$
Eisenstein-Hurwitz series on $\Gamma_0(4)$	$\mathtt{mfEH}(k)$
unary θ function (for character ψ)	$\texttt{mfTheta}(\{\psi\})$
Ramanujan's Δ	mfDelta()
$E_k(\chi)$	$ exttt{mfeisenstein}(k,\chi)$
$E_k(\chi_1,\chi_2)$	$ exttt{mfeisenstein}(k,\chi_1,\chi_2)$
eta quotient $\prod_i \eta(a_{i,1} \cdot z)^{a_{i,2}}$	${\tt mffrometaquo}(a)$
newform attached to ell. curve E/\mathbf{Q}	${\tt mffromell}(E)$
identify an L -function as a eigenform	${ t mffromlfun}(L)$
θ function attached to $Q > 0$	${ t mffromqf}(Q)$
trace form in $S_k^{\text{new}}(\Gamma_0(N), \chi)$	$\mathtt{mftraceform}([N,k,\chi])$
trace form in $S_k^{\kappa}(\Gamma_0(N),\chi)$	$\texttt{mftraceform}([N,k,\chi],1)$

Operations on modular forms

```
In this section, f, g and the F[i] are modular forms
f \times q
                                                   mfmul(f, a)
                                                  mfdiv(f, g)
f/g
                                                  mfpow(f, n)
f(q)/q^{v}
                                                  mfshift(f, v)
\sum_{i < k} \lambda_i F[i], L = [\lambda_1, \dots, \lambda_k]
                                                  mflinear(F, L)
                                                  mfisequal(f,g)
expanding operator B_d(f)
                                                  mfbd(f,d)
Hecke operator T_n f
                                                  mfhecke(mf, f, n)
initialize Atkin-Lehner operator w_{\mathcal{O}}
                                                  mfatkininit(mf, Q)
... apply w_O to f
                                                  mfatkin(w_O, f)
twist by the quadratic char (D/\cdot)
                                                  mftwist(f, D)
derivative wrt. a \cdot d/da
                                                  mfderiv(f)
see f over an absolute field
                                                  mfreltoabs(f)
Serre derivative \left(q \cdot \frac{d}{dq} - \frac{k}{12}E_2\right)f
                                                   mfderivE2(f)
Rankin-Cohen bracket [f, q]_n
                                                  mfbracket(f, a, n)
Shimura lift of f for discriminant D
                                                  mfshimura(mf, f, D)
```

Properties of modular forms

(AT 1) C C

In this section, $f = \sum_{n} f_n q^n$ is a modular form in some space M with parameters N, k, χ . describe the form fmfdescribe(f)

(N, k, χ) for form f	$\mathtt{mfparams}(f)$
the space identifier $(0 \text{ to } 4)$ for f	${\tt mfspace}(mf,f)$
$[f_0,\ldots,f_n]$	${\tt mfcoefs}(f,n)$
f_n	${\tt mfcoef}(f,n)$
is f a CM form?	${\tt mfisCM}(f)$
is f an eta quotient?	${\tt mfisetaquo}(f)$
Galois rep. attached to all $(1, \chi)$ eigenforms	${\tt mfgaloistype}(M)$
single eigenform	${\tt mfgaloistype}(M,F)$
\dots as a polynomial fixed by Ker ρ_F mf	$\operatorname{galoisprojrep}(M,F)$
decompose f on $mfbasis(M)$	${\tt mftobasis}(M,f)$
smallest level on which f is defined	${\tt mfconductor}(M,f)$
decompose f on $\oplus S_k^{\text{new}}(\Gamma_0(d)), d \mid N$	${\tt mftonew}(M,f)$
valuation of f at cusp c	${\tt mfcuspval}(M,f,c)$
expansion at ∞ of $f _k \gamma$ mfslash	$\mathtt{nexpansion}(M,f,\gamma,n)$
n-Taylor expansion of f at i	mftaylor(f, n)
all rational eigenforms matching criteria	mfeigensearch
forms matching criteria	mfsearch

Forms embedded into C

Given a modular form f in $M_k(\Gamma_0(N), \chi)$ its field of definition Q(f)has $n = [Q(f) : Q(\chi)]$ embeddings into the complex numbers. If n=1, the following functions return a single answer, attached to the canonical embedding of f in $\mathbb{C}[[q]]$; else a vector of n results, corresponding to the n conjugates of f.

```
complex embeddings of Q(f)
                                                mfembed(f)
\dots embed coefs of f
                                                mfembed(f, v)
evaluate f at \tau \in \mathcal{H}
                                                mfeval(f, \tau)
L-function attached to f
                                                lfunmf(mf, f)
\dots eigenforms of new space M
                                                lfunmf(M)
```

Periods and symbols

The functions in this section depend on $[Q(f):Q(\chi)]$ as above. initialize symbol fs attached to fmfsymbol(M, f)evaluate symbol fs on path pmfsymboleval(fs, p)Petersson product of f and gmfpetersson(fs, qs)period polynomial of form fmfperiodpol(M, fs)period polynomials for eigensymbol FSmfmanin(FS)

Modular Symbols

Let $G = \Gamma_0(N)$, $V_k = \mathbf{Q}[X,Y]_{k-2}$ and $L_k = \mathbf{Z}[X,Y]_{k-2}$. Let $\Delta = \text{Div}^0(\mathbf{P}^1(\mathbf{Q}))$, generated by paths between cusps of $X_0(N)$, via the identification $[b] - [a] \rightarrow \text{path from } a \text{ to } b$. In GP, the latter is coded by the pair [a, b] where a, b are rationals or oo = (1 : 0).

Let $\mathbf{M}_k(G) = \mathrm{Hom}_G(\Delta, V_k) \simeq H_c^1(X_0(N), V_k)$; an element of $\mathbf{M}_{k}(G)$ is a V_{k} -valued modular symbol. There is a natural decomposition $\mathbf{M}_k(G) = \mathbf{M}_k(G)^+ \oplus \mathbf{M}_k(G)^-$ under the action of the * involution, induced by complex conjugation. The msinit function computes either \mathbf{M}_k ($\varepsilon = 0$) or its \pm -parts ($\varepsilon = \pm 1$) and fixes a minimal set of $\mathbf{Z}[G]$ -generators (g_i) of Δ .

initialize $M = \mathbf{M}_k(\Gamma_0(N))^{\varepsilon}$	$\mathtt{msinit}(N,k,\{\varepsilon=0\})$
the level M	${\tt msgetlevel}(M)$
the weight k	${\tt msgetweight}(M)$
the sign ε	${\tt msgetsign}(M)$
Farey symbol attached to G	${ t mspolygon}(M)$
\dots attached to $H < G$	$\mathtt{msfarey}(F,inH)$
$H\backslash G$ and right G -action	${\tt mscosets}(genG, inH)$
$\mathbf{Z}[G]$ -generators (g_i) and relations for Δ decompose $p = [a, b]$ on the (g_i)	Δ mspathgens (M) mspathlog (M,p)

Create a symbol

Eisenstein symbol attached to cusp c	$\mathtt{msfromcusp}(M,c)$
cuspidal symbol attached to E/\mathbf{Q}	${\tt msfromell}(E)$
symbol having given Hecke eigenvalues	${\tt msfromhecke}(M,v,\{H\})$
is s a symbol?	${\tt msissymbol}(M,s)$

Operations on symbols

Operations on symbols	
the list of all $s(g_i)$	$\mathtt{mseval}(M,s)$
evaluate symbol s on path $p = [a, b]$	$\mathtt{mseval}(M,s,p)$
Petersson product of s and t	$\mathtt{mspetersson}(M,s,t)$

Operators on subspaces

An operator is given by a matrix of	a fixed \mathbf{Q} -basis. H , if given, is
a stable Q -subspace of $\mathbf{M}_k(G)$: ope	erator is restricted to H .
matrix of Hecke operator T_p or U_p	$\mathtt{mshecke}(M,p,\{H\})$
matrix of Atkin-Lehner w_Q	$\mathtt{msatkinlehner}(M,Q\{H\}$
matrix of the * involution	$\mathtt{msstar}(M,\{H\})$

Subspaces

A subspace is given by a structure allowing quick projection and restriction of linear operators. Its fist component is a matrix with integer coefficients whose columns for a **Q**-basis. If H is a Heckestable subspace of $M_k(G)^+$ or $M_k(G)^-$, it can be split into a direct sum of Hecke-simple subspaces. To a simple subspace corresponds a single normalized newform $\sum_n a_n q^n$.

```
\begin{array}{lll} \text{cuspidal subspace } S_k(G)^{\varepsilon} & \text{mscuspidal}(M) \\ \text{Eisenstein subspace } E_k(G)^{\varepsilon} & \text{mseisenstein}(M) \\ \text{new part of } S_k(G)^{\varepsilon} & \text{msnew}(M) \\ \text{split $H$ into simple subspaces (of $\dim \leq d$)} & \text{msplit}(M,H,\{d\}) \\ \text{dimension of a subspace} & \text{msdim}(M) \\ (a_1,\ldots,a_B) & \text{for attached newform} & \text{msqexpansion}(M,H,\{B\}) \\ \mathbf{Z}\text{-structure from $H^1(G,L_k)$ on subspace $A$} & \text{mslattice}(M,A) \\ \end{array}
```

Overconvergent symbols and p-adic L functions

Let M be a full modular symbol space given by msinit and p be a prime. To a classical modular symbol ϕ of level N ($v_p(N) \leq 1$), which is an eigenvector for T_p with nonzero eigenvalue a_p , we can attach a p-adic L-function L_p . The function L_p is defined on continuous characters of $\operatorname{Gal}(\mathbf{Q}(\mu_{p^\infty})/\mathbf{Q})$; in GP we allow characters $\langle \chi \rangle^{s_1} \tau^{s_2}$, where (s_1, s_2) are integers, τ is the Teichmüller character and χ is the cyclotomic character.

The symbol ϕ can be lifted to an *overconvergent* symbol Φ , taking values in spaces of p-adic distributions (represented in GP by a list of moments modulo p^n).

mspadicinit precomputes data used to lift symbols. If flag is given, it speeds up the computation by assuming that $v_p(a_p) = 0$ if flag = 0 (fastest), and that $v_p(a_p) \ge flag$ otherwise (faster as flag increases).

mspadic moments computes distributions mu attached to Φ allowing to compute $L_{\mathcal{D}}$ to high accuracy.

```
\begin{array}{ll} \text{initialize $Mp$ to lift symbols} & \text{mspadicinit}(M,p,n,\{flag\}) \\ \text{lift symbol $\phi$} & \text{mstooms}(Mp,\phi) \\ \text{eval overconvergent symbol $\Phi$ on path $p$} & \text{msomseval}(Mp,\Phi,p) \\ mu \text{ for $p$-adic $L$-functions} & \text{mspadicmoments}(Mp,S,\{D=1\}) \\ L_p^{(r)}(\chi^s), \ s = [s_1,s_2] & \text{mspadicL}(mu,\{s=0\},\{r=0\}) \\ \hat{L}_p(\tau^i)(x) & \text{mspadicseries}(mu,\{i=0\}) \end{array}
```

Based on an earlier version by Joseph H. Silverman September 2024 v2.39. Copyright © 2024 K. Belabas Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies.

Send comments and corrections to (Karim.Belabas@math.u-bordeaux.fr)