
A Tutorial

for

PARI / GP

(version 2.17.0)

The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération

F-33405 TALENCE Cedex, FRANCE
e-mail: pari@math.u-bordeaux.fr

Home Page:
https://pari.math.u-bordeaux.fr/

Copyright c© 2000–2024 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright c© 2000–2024 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

1. Greetings! . 4
2. Warming up . 7
3. The Remaining PARI Types . 9
4. Elementary Arithmetic Functions . 14
5. Performing Linear Algebra . 15
6. Using Transcendental Functions . 17
7. Using Numerical Tools . 20
8. Polynomials . 22
9. Power Series . 24
10. Working with Elliptic Curves . 25
11. Working in Quadratic Number Fields . 30
12. Working in General Number Fields . 35

12.1. Defining equations and elements in the field . 35

12.2. Ideals . 39

12.3. Class Groups and Units, bnf . 41

12.4. Class Field Theory, bnr . 43

12.5. Galois Theory over Q . 44

12.6. Creating and Listing Number Fields . 45

13. Working with Associative Algebras . 46
13.1. Arbitrary Associative Algebras . 46

13.2. Central Simple Algebras over Number Fields . 49

14. Plotting . 52
15. GP Programming . 59

This booklet is a guided tour and a tutorial to the gp calculator. Many examples will be given,
but each time a new function is used, the reader should look at the appropriate section in the
User’s Manual to PARI/GP for detailed explanations. This chapter can be read independently, for
example to get acquainted with the possibilities of gp without having to read the whole manual.
At this point.

1. Greetings!.

So you are sitting in front of your workstation (or terminal, or PC. . .), and you type gp to get
the program started (or click on the relevant icon, or select some menu item). It says hello in its
particular manner, and then waits for you after its prompt, initially ? (or something like gp >).
Type

2 + 2

What happens? Maybe not what you expect. First of all, of course, you should tell gp that your
input is finished, and this is done by hitting the Return (or Newline, or Enter) key. If you do
exactly this, you will get the expected answer. However some of you may be used to other systems
like Gap, Macsyma, Magma or Maple. In this case, you will have subconsciously ended the line with
a semicolon “;” before hitting Return, since this is how it is done on those systems. In that case,
you will simply see gp answering you with a smug expression, i.e. a new prompt and no answer!
This is because a semicolon at the end of a line tells gp not to print the result (it is still stored in
the result history). You will certainly want to use this feature if the output is several pages long.
Try

27 * 37

Wow! even multiplication works. Actually, maybe those spaces are not necessary after all. Let’s
try 27*37. Seems to be ok. We will still insert them in this document since it makes things easier
to read, but as gp does not care about them, you don’t have to type them all.

Now this session is getting lengthy, so the second thing one needs to learn is to quit. Each
system has its quit signal. In gp, you can use quit or \q (backslash q), the q being of course for
quit. Try it.

Now you’ve done it! You’re out of gp, so how do you want to continue studying this tutorial?
Get back in please.

Let’s get to more serious stuff. I seem to remember that the decimal expansion of 1/7 has
some interesting properties. Let’s see what gp has to say about this. Type

1 / 7

What? This computer is making fun of me, it just spits back to me my own input, that’s not what
I want!

Now stop complaining, and think a little. Mathematically, 1/7 is an element of the field Q of
rational numbers, so how else but 1/7 can the computer give the answer to you? Well maybe 2/14
or 7−1, but why complicate matters? Seriously, the basic point here is that PARI, hence gp, will
almost always try to give you a result which is as precise as possible (we will see why “almost”
later). Hence since here the result can be represented exactly, that’s what it gives you.

But I still want the decimal expansion of 1/7. No problem. Type one of the following:

4

1./ 7

1 / 7.

1./ 7.

1 / 7 + 0.

Immediately a number of decimals of this fraction appear (exactly 38), and the repeating pattern is
142, 857. The reason is that you have included in the operations numbers like 0., 1. or 7. which
are imprecise real numbers, hence gp cannot give you an exact result.

Why 38 decimals by the way? Well, it is the default initial precision. This has been chosen
so that the computations are very fast, and gives already more accuracy than conventional double
precision floating point operations. The precise value is 128 bits of accuracy by default, which
translates to 128 log10 2 ≈ 38.53 decimal digits, rounded to 38. Of course, you can extend the
precision (almost) as much as you like as we will see in a moment.

I’m getting bored, why don’t we get on with some more exciting stuff? Well, try exp(1).
Presto, comes out the value of e to 38 digits. Try log(exp(1)). Well, we get a floating point
number and not an exact 1, but pretty close! That’s what you lose by working numerically.

What could we try now? Hum, pi? The answer is not that enlightening. Pi? Ah. This
works better. But let’s remember that gp distinguishes between uppercase and lowercase letters.
pi was as meaningless to it as stupid garbage would have been: in both cases gp will just create
a variable with that funny unknown name you just used. Try it! Note that it is actually equivalent
to type stupidgarbage: all spaces are suppressed from the input. In the 27 * 37 example it
was not so conspicuous as we had an operator to separate the two operands. This has important
consequences for the writing of gp scripts. More about this later.

By the way, you can ask gp about any identifier you think it might know about: just type it,
prepending a question mark “?”. Try ?Pi and ?pi for instance. On most systems, an extended
online help should be available: try doubling the question mark to check whether it’s the case on
yours: ??Pi. In fact the gp header already gave you that information if it was the case, just before
the copyright message. As well, if it says something like “readline enabled” then you should
have a look at the readline introduction in the User’s Manual before you go on: it will be much
easier to type in examples and correct typos after you’ve done that.

Now try exp(Pi * sqrt(163)). Hmmm, we suspect that the last digit may be wrong, can
this really be an integer? This is the time to change precision. Type \p 50, then try exp(Pi *

sqrt(163)) again. We were right to suspect that the last decimal was incorrect, since we get quite
a few nines in its place, but it is now convincingly clear that this is not an integer. Maybe it’s a
bug in PARI, and the result is really an integer? Type

(log(%) / Pi)^2

immediately after the preceding computation; % means the result of the last computed expression.
More generally, the results are numbered %1, %2, . . . including the results that you do not want
to see printed by putting a semicolon at the end of the line, and you can evidently use all these
quantities in any further computations. The result seems to be indistinguishable from 163, hence
it does not seem to be a bug.

In fact, it is known that exp(π ∗
√
n) not only is not an integer or a rational number, but is

even a transcendental number when n is a nonzero rational number.

So gp is just a fancy calculator, able to give me more decimals than I will ever need? Not so,
gp is incredibly more powerful than an ordinary calculator, independently of its arbitrary precision
possibilities.

5

Additional comments. (you are supposed to skip this at first, and come back later)

1) If you are a PARI old timer, say the last version of PARI you used was released around
1996, you have certainly noticed already that many many things changed between the older 1.39.xx
versions and this one. Conspicuously, most function names have been changed. To know how a
specific function was changed, type whatnow(function).

2) It seems that the text implicitly says that as soon as an imprecise number is entered, the
result will be imprecise. Is this always true? There is a unique exception: when you multiply
an imprecise number by the exact number 0, you will get the exact 0. Compare 0 * 1.4 and
0. * 1.4.

3) Not only can the number of decimal places of real numbers be large, but the number of
digits of integers also. Try 1000!. It is never necessary to tell gp in advance the size of the integers
that it will encounter. The same is true for real numbers, although most computations with floating
point assume a default precision and truncate their results to this accuracy; initially 38 decimal
digits, but we may change that with \p of course.

4) Come back to 38 digits of precision (\p 38), and type exp(100). As you can see the result
is printed in exponential format. This is because gp never wants you to believe that a result is
correct when it is not. We are working with 38 digits of precision, but the integer part of exp(100)
has 44 decimal digits. Hence if gp had dutifully printed out 44 digits, the last few digits would
have been wrong. Hence gp wants to print only 38 significant digits, but to do so it has to print in
exponential format.

5) There are two ways to avoid this. One is of course to increase the precision. Let’s try it.
To give it a wide margin, we set the precision to 50 decimals. Then we recall our last result (%
or %n where n is the number of the result). What? We still have an exponential format! Do you
understand why?

Again let’s try to see what’s happening. The number you recalled had been computed only to
38 decimals, and even if you set the precision to 1000 decimals, gp knows that your number has
only 38 digits of accuracy but an integral part with 44 digits. So you haven’t improved things by
increasing the precision. Or have you? What if we retype exp(100) now that we have 50 digits?
Try it. Now we no longer have an exponential format.

6) What if I forget what the current precision is and I don’t feel like counting all the decimals?
Well, you can type \p by itself. You may also learn about gp internal variables (and change them!)
using default. Type default(realprecision), then default(realprecision, 38). Huh? In
fact this last command is strictly equivalent to \p 38! (Admittedly more cumbersome to type.)
There are more “defaults” than just format and realprecision: type default by itself now, they
are all there.

7) Note that the default command reacts differently according to the number of input argu-
ments. This is not an uncommon behavior for gp functions. You can see this from the online help,
or the complete description in Chapter 3: any argument surrounded by braces {} in the function
prototype is optional, which really means that a default argument will be supplied by gp. You can
then check out from the text what effect a given value will have, and in particular the default one.

8) Try the following: starting in precision 38, type first default(format, "e0.100"), then
exp(1). Where are my 100 significant digits? Well, default(format,) only changes the output
format, but not the default precision. On the other hand, the \p command changes both the
precision and the output format.

6

2. Warming up.

Another thing you better get used to pretty fast is error messages. Try typing 1/0. Could not
be clearer. But why has the prompt become funny, turning from ? to break> ? When an error
occurs, we enter a so-called break loop, where you get a chance, e.g to inspect (and save!) values
of variables before the prompt returns and all computations so far are lost. In fact you can run an
arbitrary command at this point, and this mechanism is a tremendous help in debugging. To get
out of the break loop, type break, as instructed in the error message last line.

Comment. You can enter the break loop at any time using Control-C: this freezes the current
computation and gets you a new prompt so that you may e.g., increase debugging level, inspect or
modify variables (again, run arbitrary commands), before letting the program go on.

Now, back to our favorite example, in precision 38, type

floor(exp(100))

floor is the mathematician’s integer part, not to be confused with truncate, which is the computer
scientist’s: floor(-3.4) is equal to −4 whereas truncate(-3.4) is equal to −3. You get a more
cryptic error message, which you would immediately understand if you had read the additional
comments of the preceding section. Since you were told not to read them, here’s the explanation:
gp is unable to compute the integer part of exp(100) given only 38 decimals of accuracy, since it
has 44 digits.

Some error messages are more cryptic and sometimes not so easy to understand. For instance,
try log(x). It simply tells you that gp does not understand what log(x) is, although it does know
the log function, as ?log will readily tell us.

Now let’s try sqrt(-1) to see what error message we get now. Haha! gp even knows about
complex numbers, so impossible to trick it that way. Similarly, try typing log(-2), exp(I*Pi),
I^I. . . So we have a lot of real and complex analysis at our disposal. There always is a specific
branch of multivalued complex transcendental functions which is taken, specified in the manual.
Again, beware that I and i are not the same thing. Compare I^2 with i^2 for instance.

Just for fun, let’s try 6*zeta(2) / Pi^2. Pretty close, no?

Now gp didn’t seem to know what log(x) was, although it did know how to compute numerical
values of log. This is annoying. Maybe it knows the exponential function? Let’s give it a try. Type
exp(x). What’s this? If you had any experience with other computer algebra systems, the answer
should have simply been exp(x) again. But here the answer is the Taylor expansion of the function
around x = 0, to 17 terms. Note the O(x^17) which ends the series, and which is trademark of
power series in gp. It is the familiar “big–oh” notation of analysis. Why 17 terms? This is governed
by the seriesprecision, which can be changed by typing \ps n or default(seriesprecision,

n) where n is the number of terms that you want in your power series and is 16 by default.
Converting a polynomial or rational function to a power series will yield 16 significant terms: so x
gets converted to x+O(x17); this is completely analogous to realprecision when an exact integer
or rational number is converted to a floating point real number. Then we take the exponential of
this new object and, since it has positive valuation, we can actually deduce 17 significant terms
from the given 16. This is in keeping with PARI’s philosophy of always returning a result which is
as precise as possible from a given input.

You thus automatically get the Taylor expansion of any function that can be expanded around
0, and incidentally this explains why we weren’t able to do anything with log(x) which is not

7

defined at 0. (In fact gp knows about Laurent series, but log(x) is not meromorphic either at
0.) If we try log(1+x), then it works, but this time we lose one significant term: the result is
x− 1/2x2 + . . .+ 1/15x15 +O(x16)). (Do you understand why ?)

But what if we wanted the expansion around a point different from 0? Well, you’re able to
change x into x + a, aren’t you? So for instance you can type log(x+2) to have the expansion of
log around x = 2. As exercises you can try

cos(x)

cos(x)^2 + sin(x)^2

exp(cos(x))

gamma(1 + x)

exp(exp(x) - 1)

1 / tan(x)

for different values of serieslength (change it using \ps newvalue).

Let’s try something else: type (1 + x)^3. No O(x) here, since the result is a polynomial.
Haha, but I have learnt that if you do not take exponents which are integers greater or equal to 0,
you obtain a power series with an infinite number of nonzero terms. Let’s try. Type (1 + x)^(-3)

(the parentheses around -3 are not necessary but make things easier to read). Surprise! Contrary
to what we expected, we don’t get a power series but a rational function. Again this is for the same
reason that 1 / 7 just gave you 1/7: the result being exact, PARI doesn’t see any reason to make
it inexact.

But I still want that power series. To obtain it, you can do as in the 1/7 example and force a
conversion using the O(xn) notation:

(1 + x)^(-3) + O(x^16)

(1 + x)^(-3) * (1 + O(x^16))

(1 + x + O(x^16))^(-3)

(Not on this example, but there is a difference between the first 2 methods. Do you spot it?) Better
yet, use the series constructor which transforms any object into a power series, using the current
seriesprecision, and simply type

Ser((1 + x)^(-3))

Now try (1 + x)^(1/2): we obtain a power series, since the result is an object which PARI
does not know how to represent exactly. (We could teach PARI about algebraic functions, but
then take (1 + x)^Pi as another example.) This gives us still another solution to our preceding
exercise: we can type (1 + x)^(-3.). Since -3. is not an exact quantity, PARI has no means to
know that we are dealing with a rational function, and will instead give you the power series, this
time with real instead of integer coefficients.

To summarize, in this section we have seen that in addition to integers, real numbers and
rational numbers, PARI can handle complex numbers, polynomials, rational functions and power
series. A large number of functions exist which handle these types, but in this tutorial we will only
look at a few.

8

Additional comments. (as before, you are supposed to skip this at first reading)

1) In almost all cases, there is no loss of information in PARI output: what you see is all
that PARI knows about the object, and you can happily copy-paste it into another session. There
are exceptions, though. Type n = 3 + 0*x, then n is not the integer 3 but a constant polynomial
equal to 3x0. Check it with type(n).

However, it looks like an integer without being one, and this may cause some confusion in
programs which actually expect integers. Hence if you try to factor(n), you obtain an empty
factorization ! (Because, once considered as a polynomial, n is a unit in Q[x].)

If you try to apply more general arithmetic functions, say the Euler totient function (known
as eulerphi to gp), you get an error message worrying about integer arguments. You would have
guessed yourself, but the message is difficult to understand since 3 looks like a genuine integer!
Please make sure you understand the above, it is a common source of incomprehension.

2) If you want the final expression to be in the simplest form possible (for example before
applying an arithmetic function, or simply because things will go faster afterwards), apply the
function simplify to the result. This is done automatically at the end of a gp command, but not
in intermediate expressions. Hence n above is not an integer, but the final result stored in the
output history is! So if you type type(%) instead of type(n) the answer is t_INT, adding to the
confusion.

3) As already stated, power series expansions are always implicitly around x = 0. When we
want them around x = a, we replace x by z + a in the function we want to expand. For complicated
functions, it may be simpler to use the substitution function subst. For example, if p = 1 / (x^

4 + 3*x^3 + 5*x^2 - 6*x + 7), you may not want to retype this, replacing x by z + a, so you
can write subst(p, x, z+a) (look up the exact description of the subst function).

4) The valuation at x = 0 for a power series p is obtained as valuation(p, x).

3. The Remaining PARI Types.

Let’s talk some more about the basic PARI types.

Type p = x * exp(-x). As expected, you get the power series expansion to 17 terms (if
you have not changed the default). Now type pr = serreverse(p). You are asking here for the
reversion of the power series p, in other words the expansion of the inverse function. This is possible
only for power series whose first nonzero coefficient is that of x1. To check the correctness of the
result, you can type subst(p, x, pr) or subst(pr, x, p) and you should get back x + O(x^

18).

Now the coefficients of pr obey a very simple formula. First, we would like to multiply the
coefficient of x^n by n! (in the case of the exponential function, this would simplify things con-
siderably!). The PARI function serlaplace does just that. So type ps = serlaplace(pr). The
coefficients now become integers, which can be immediately recognized by inspection. The coeffi-
cient of xn is now equal to nn−1. In other words, we have

pr =
∑
n≥1

nn−1

n!
Xn.

Do you know how to prove this? (The proof is difficult.)

9

Of course PARI knows about vectors (rows and columns are distinguished, even though math-
ematically there is no difference) and matrices. Type for example [1,2,3,4]. This gives the row
vector whose coordinates are 1, 2, 3 and 4. If you want a column vector, type [1,2,3,4]~, the
tilde meaning of course transpose. You don’t see much difference in the output, except for the tilde
at the end. However, now type \B: lo and behold, the column vector appears as a proper vertical
thingy now. The \B command is used mainly for this purpose. The length of a vector is given by,
well length of course. The shorthand “cardinality” notation #v for length(v) is also available, for
instance v[#v] is the last element of v.

Type m = [a,b,c; d,e,f]. You have just entered a matrix with 2 rows and 3 columns. Note
that the matrix is entered by rows and the rows are separated by semicolons “;”. The matrix is
printed naturally in a rectangle shape. If you want it printed horizontally just as you typed it, type
\a, or if you want this type of printing to be the permanent default type default(output, 0).
Type default(output, 1) if you want to come back to the original output mode.

Now type m[1,2], m[1,], m[,2]. Are explanations necessary? (In an expression such as
m[j,k], the j always refers to the row number, and the k to the column number, and the first
index is always 1, never 0. This default cannot be changed.)

Even better, type m[1,2] = 5; m. The semicolon also allows us to put several instructions on
the same line; the final result is the output of the last statement on the line. Now type m[1,] =

[15,-17,8]. No problem. Finally type m[,2] = [j,k]. You have an error message since you have
typed a row vector, while m[,2] is a column vector. If you type instead m[,2] = [j,k]~ it works.

Type now h = mathilbert(20). You get the so-called “Hilbert matrix” whose coefficient of
row i and column j is equal to (i+ j−1)−1. Incidentally, the matrix h takes too much room. If you
don’t want to see it, simply type a semi-colon “;” at the end of the line (h = mathilbert(20);).
This is an example of a “precomputed” matrix, built into PARI. We will see a more general
construction later.

What is interesting about Hilbert matrices is that first their inverses and determinants can
be computed explicitly (and the inverse has integer coefficients), and second they are numerically
very unstable, which make them a severe test for linear algebra packages in numerical analysis.
Of course with PARI, no such problem can occur: since the coefficients are given as rational
numbers, the computation will be done exactly, so there cannot be any numerical error. Try it.
Type d = matdet(h). The result is a rational number (of course) of numerator equal to 1 and
denominator having 226 digits. How do I know, by the way? Well, type sizedigit(1/d). Or
#Str(1/d). (The length of the character string representing the result.)

Now type hr = 1.* h; (do not forget the semicolon, we don’t want to see the result!), then dr

= matdet(hr). You notice two things. First the computation, is much faster than in the rational
case. (If your computer is too fast for you to notice, try again with h = mathilbert(40), or even
some larger value.) The reason for this is that PARI is handling real numbers with 38 digits of
accuracy, while in the rational case it is handling integers having up to 226 decimal digits.

The second, more important, fact is that the result is terribly wrong. If you compare with
1.∗d computed earlier, which is the correct answer, you will see that few decimals agree! (None
agree if you replaced 20 by 40 as suggested above.) This catastrophic instability is as already
mentioned one of the characteristics of Hilbert matrices. In fact, the situation is worse than that.
Type norml2(1/h - 1/hr) (the function norml2 gives the square of the L2 norm, i.e. the sum of
the squares of the coefficients). The result is larger than 1032, showing that some coefficients of
1/hr are wrong by as much as 1016. To obtain the correct result after rounding for the inverse, we
have to use a default precision of 57 digits (try it).

10

Although vectors and matrices can be entered manually, by typing explicitly their elements,
very often the elements satisfy a simple law and one uses a different syntax. For example, as-
sume that you want a vector whose i-th coordinate is equal to i2. No problem, type for example
vector(10,i, i^2) if you want a vector of length 10. Similarly, if you type

matrix(5,5, i,j, 1 / (i+j-1))

you will get the Hilbert matrix of order 5, hence the mathilbert function is in fact redundant. The
i and j represent dummy variables which are used to number the rows and columns respectively
(in the case of a vector only one is present of course). You must not forget, in addition to the
dimensions of the vector or matrix, to indicate explicitly the names of these variables. You may
omit the variables and the final expression to get zero entries, as in matrix(10,20).

Warning. The letter I is reserved for the complex number equal to the square root of −1. Hence
it is forbidden to use it as a variable. Try typing I = 2, the error message that you get clearly
indicates that gp does not consider I as a variable. There are other reserved variable names: Pi,
Euler, Catalan and oo. All function names are forbidden as well. On the other hand there is
nothing special about i, pi, euler or catalan.

When creating vectors or matrices, it is often useful to use Boolean operators and the if()

statement. Indeed, an if expression has a value, which is of course equal to the evaluated part of
the if. So for example you can type

matrix(8,8, i,j, if ((i-j)%2, 1, 0))

to get a checkerboard matrix of 1 and 0. Note however that a vector or matrix must be created
first before being used. For example, it is possible to write

v = vector(5);

for (i = 1, 5, v[i] = 1/i)

but this would fail if the vector v had not been created beforehand. Of course, the above example
is better written as

v = vector(5, i, 1/i);

Another useful way to create vectors and matrices is to extract them from larger ones. For
instance, if h is the 20× 20 Hilbert matrix as above,

h = mathilbert(20);

h[11..20, 11..20]

is its lower right quadrant.

The last PARI types which we have not yet played with are closely linked to number theory.
People not interested in number theory can skip ahead.

The first is the type “integer–modulo”. Let us see an example. Type

n = 10^15 + 3

We want to know whether this number is prime or not. Of course we could make use of the
built-in facilities of PARI, but let us do otherwise. We first trial divide by the built-in table of
primes. We slightly cheat here and use a variant of the function factor which does exactly this.
So type factor(n, 200000). The last argument tells factor to trial divide up to the given bound
and stop at this point. Set it to 0 to trial divide by the full set of built-in primes, which goes up to
220 = 1, 048, 576 by default.

11

As for all factoring functions, the result is a 2 column matrix: the first column gives the
primes and the second their exponents. Here we get a single row, telling us that if primes stopped
at 200, 000 as we made factor believe, then n would be prime. (Or is that a contradiction?) More
seriously, n is not divisible by any prime up to 200, 000.

We could now trial divide further, or cheat and call the PARI function factor without the
optional second argument, but before we do this let us see how to get an answer ourselves.

By Fermat’s little theorem, if n is prime we must have an−1 ≡ 1 (mod n) for all a not
divisible by n. Hence we could try this with a = 2 for example. But 2n−1 is a number with
approximately 3 · 1014 digits, hence impossible to write down, let alone to compute. But instead
type a = Mod(2,n). This creates the number 2 considered now as an element of the ring R = Z/nZ.
The elements of R, called intmods, can always be represented by numbers smaller than n, hence
small. Fermat’s theorem can be rewritten an−1 = Mod(1, n) in the ring R, and this can be computed
very efficiently. Elements of R may be lifted back to Z with either lift or centerlift. Type a^

(n-1). The result is definitely not equal to Mod(1,n), thus proving that n is not a prime. If we
had obtained Mod(1,n) on the other hand, it would have given us a hint that n is maybe prime,
but not a proof.

To find the factors is another story. In this case, the integer n is small enough to let trial
division run to completion. Type # to turn on the gp timer, then

for (i = 2, ceil(sqrt(n)), if (n%i==0, print(i); break))

This should take less than 2 seconds. In general, one must use less naive techniques than trial
division, or be very patient. Type fa = factor(n) to let the factoring engine find all prime
factors. You may stop the timer by typing # again.

Note that, as is the case with most “prime”-producing functions, the “prime” factors given
by factor are only strong pseudoprimes, and not proven primes. Use isprime(fa[,1]) to
rigorously prove primality of the factors. The latter command applies isprime to all entries in
the first column of fa, i.e to all pseudoprimes, and returns the column vector of results: all equal
to 1, so our pseudoprimes were true primes. All arithmetic functions can be applied in this way
to the entries of a vector or matrix. In fact, it has been checked that the strong pseudoprimes
output by factor (Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes, without small divisors) are
true primes at least up to 264, and no explicit counter-example is known.

The second specifically number-theoretic type is the p-adic numbers. I have no room for
definitions, so please skip ahead if you have no use for such beasts. A p-adic number is entered as
a rational or integer valued expression to which is added O(p^n), or simply O(p) if n = 1, where p

is the prime and n the p-adic precision. Note that you have to explicitly type in 3^2 for instance,
9 will not do. Unless you want to cheat gp into believing that 9 is prime, but you had better know
what you are doing in this case: most computations will yield a wrong result.

Apart from the usual arithmetic operations, you can apply a number of transcendental func-
tions. For example, type n = 569 + O(7^8), then s = sqrt(n), you obtain one of the square
roots of n; to check this, type s^2 - n). Type now s = log(n), then e = exp(s). If you know
about p-adic logarithms, you will not be surprised that e is not equal to n. Type (n/e)^6: e is in
fact equal to n times the (p− 1)-st root of unity teichmuller(n).

Incidentally, if you want to get back the integer 569 from the p-adic number n, type lift(n)

or truncate(n).

12

The third number-theoretic type is the type “quadratic number”. This type is specially tailored
so that we can easily work in a quadratic extension of a base field, usually Q. It is a generalization
of the type “complex”. To start, we must specify which quadratic field we want to work in. For
this, we use the function quadgen applied to the discriminant d (as opposed to the radicand) of
the quadratic field. This returns a number equal to (d + a)/2 where a is equal to 0 or 1 according
to whether d is even or odd. The function quadgen takes an extra parameter which is how the
number will be printed. To avoid confusion, this number should be set to a variable of the same
name, i.e. do w = quadgen(d, ’w).

So type w = quadgen(-163,’w), then charpoly(w) which asks for the characteristic polyno-
mial of w. The result shows what w will represent. You may ask for 1.*w to see which root of the
quadratic has been taken, but this is rarely necessary. We can now play in the field Q(

√
−163).

Type for example w^10, norm(3 + 4*w), 1 / (4+w). More interesting, type a = Mod(1,23) * w

then b = a^264. This is a generalization of Fermat’s theorem to quadratic fields. If you do not
want to see the modulus 23 all the time, type lift(b).

Another example: type p = x^2 + w*x + 5*w + 7, then norm(p). We thus obtain the quartic
equation over Q corresponding to the relative quadratic extension over Q(w) defined by p.

On the other hand, if you type wr = sqrt(w^2), do not expect to get back w. Instead, you
get the numerical value, the function sqrt being considered as a “transcendental” function, even
though it is algebraic. Type algdep(wr,2): this looks for algebraic relations involving the powers
of w up to degree 2. This is one way to get w back. Similarly, type algdep(sqrt(3*w + 5), 4).
See the user’s manual for the function algdep.

The fourth number-theoretic type is the type “polynomial–modulo”, i.e. polynomial modulo
another polynomial. This type is used to work in general algebraic extensions, for example elements
of number fields (if the base field is Q), or elements of finite fields (if the base field is Z/pZ for a
prime p). In a sense it is a generalization of the type quadratic number. The syntax used is the
same as for intmods. For example, instead of typing w = quadgen(-163,’w), you can type

w = Mod(x, quadpoly(-163))

Then, exactly as in the quadratic case, you can type w^10, norm(3 + 4*w), 1 / (4+w), a =

Mod(1,23)*w, b = a^264, obtaining of course the same results. (Type lift(. . .) if you don’t
want to see the polynomial x^2 - x + 41 repeated all the time.) Of course, you can work in any
degree, not only quadratic. For the latter, the corresponding elementary operations will be a little
slower than with quadratic numbers. Start the timer, then compare

w = quadgen(-163,’w); W = Mod(x, quadpoly(-163));

a = 2 + w; A = 2 + W;

b = 3 + w; B = 3 + W;

for (i=1,10^6, a+b)

for (i=1,10^6, A+B)

for (i=1,10^6, a*b)

for (i=1,10^6, A*B)

for (i=1,10^6, a/b)

for (i=1,10^6, A/B)

Don’t retype everything, use the arrow keys!

There is however a slight difference in behavior. Keeping our polmod w, type 1.*w. As you
can see, the result is not the same. Type sqrt(w). Here, we obtain a vector with 2 components,

13

the two components being the principal branch of the square root of all the possible embeddings
of w in C. More generally, if w was of degree n, we would get an n-component vector, and similarly
for all transcendental functions.

We have at our disposal the usual arithmetic functions, plus a few others. Type a = Mod(x,

x^3 - x - 1) defining a cubic extension. We can for example ask for b = a^5. Now assume we
want to express a as a polynomial in b. This is possible since b is also a generator of the same field.
No problem, type modreverse(b). This gives a new defining polynomial for the same field, i.e. the
characteristic polynomial of b, and expresses a in terms of this new polmod, i.e. in terms of a. We
will see this in more detail in the number field section.

An important special case of the above construction allows to work in finite fields, by choosing
an irreducible polynomial T of degree f over Fp and considering Fp[t]/(T). As in

T = ffinit(5, 6, ’t); \\ degree 6, irreducible over F5

g = Mod(t, T)

Try a few elementary operations involving g, such as g100. This special case of t_POLMODs is
in fact so important that we now introduce a final dedicated number theoretical type t_FFELT,
for “finite field element”, to simplify work with finite fields: g = ffgen(5^6, ’t) computes a
suitable polynomial T as above and returns the generator tmodT (t). This has major advantages
over the generic t_POLMOD solution: elements are printed in a simplified way (in lifted form), and
functions can assume that T is indeed irreducible. A few dedicated functions ffprimroot (analog
of znprimroot), fforder (analog of znorder), fflog (analog of znlog) are available. Rational
expressions in the variable t can be mapped to such a finite field by substituting t by g, for instance

? g = ffgen(5^6, ’t);

? g.mod \\ irreducible over F5, defines F56

%2 = t^6 + t^5 + t^4 + t^3 + t^2 + t + 1

? Q = x^2 + t*x + 1

? factor(subst(Q,t,g))

%3 =

[x + (t^5 + 3*t^4 + t^3 + 4*t + 1) 1]

[x + (4*t^5 + 2*t^4 + 4*t^3 + 2*t + 4) 1]

factors the polynomial Q ∈ F56 [x], where F56 = F5[t]/(g.mod).

4. Elementary Arithmetic Functions.

Since PARI is aimed at number theorists, it is not surprising that there exists a large number
of arithmetic functions; see the list by typing ?5. We have already seen several, such as factor.
Note that factor handles not only integers, but also univariate polynomials. Type for example
factor(x^200 - 1). You can also ask to factor a polynomial modulo a finite field or a number
field !

Evidently, you have functions for computing GCD’s (gcd), extended GCD’s (gcdext), solving
the Chinese remainder theorem (chinese) and so on.

In addition to the factoring facilities, you have a few functions related to primality testing
such as isprime, ispseudoprime, precprime, and nextprime. As previously mentioned, only
strong pseudoprimes are produced by the latter two (they pass the ispseudoprime test); the more
sophisticated primality tests in isprime, being so much slower, are not applied by default.

14

We also have the usual multiplicative arithmetic functions: the Möbius µ function (moebius),
the Euler φ function (eulerphi), the ω and Ω functions (omega and bigomega), the σk functions
(sigma), which compute sums of k-th powers of the positive divisors of a given integer, etc. . .

You can compute continued fractions. For example, type \p 1000, then contfrac(exp(1)):
you obtain the continued fraction of the base of natural logarithms, which as you can see obeys a
very simple pattern. Can you prove it?

In many cases, one wants to perform some task only when an arithmetic condition is satisfied.
gp gives you the following functions: isprime as mentioned above, issquare, isfundamental to
test whether an integer is a fundamental discriminant (i.e. 1 or the discriminant of a quadratic
field), and the forprime, fordiv and sumdiv loops. Assume for example that we want to compute
the product of all the divisors of a positive integer n. The easiest way is to write

p = 1; fordiv(n,d, p *= d); p

(There is a simple formula for this product in terms of n and the number of its divisors: find and
prove it!) The notation p *= d is just a shorthand for p = p * d.

If we want to know the list of primes p less than 1000 such that 2 is a primitive root modulo
p, one way would be to write:

forprime(p=3,1000, if (znprimroot(p) == 2, print(p)))

Note that this assumes that znprimroot returns the smallest primitive root, and this is indeed the
case. Had we not known about this, we could have written

forprime(p=3,1000, if (znorder(Mod(2,p)) == p-1, print(p)))

(which is actually faster since we only compute the order of 2 in Z/pZ, instead of looking for
a generator by trying successive elements whose orders have to be computed as well.) Once we
know a primitive root g, we can write any nonzero element of Z/pZ as gx for some unique x in
Z/(p− 1)Z. Computing such a discrete logarithm is a hard problem in general, performed by the
function znlog.

Arithmetic functions related to quadratic fields, binary quadratic forms and general number
fields will be seen in the next sections.

5. Performing Linear Algebra.

The standard linear algebra routines are available: matdet, mateigen (eigenvectors), matker,
matimage, matrank, matsolve (to solve a linear system), charpoly (characteristic polynomial),
to name a few. Bilinear algebra over R is also there: qfgaussred (Gauss reduction), qfsign

(signature). You may also type ?7. Can you guess what each of these do?

Let us see how this works. First, a vector space (or module) is given by a generating set
of vectors (often a basis) which are represented as column vectors. This set of vectors is in turn
represented by the columns of a matrix. Quadratic forms are represented by their Gram matrix.
The base field (or ring) can be any ring type PARI supports. However, certain operations are
specifically written for a real or complex base field, while others are written for Z as the base ring.

We had some fun with Hilbert matrices and numerical instability a while back, but most of
the linear algebra routines are generic. If as before h = mathilbert(20), we may compute

matdet(h * Mod(1,101))

15

matdet(h * (1 + O(101^100)))

in Z/101Z and the p-adic ring Z101 (to 100 words of accuracy) respectively. Let H = 1/h the inverse
of h:

H = 1/h; \\ integral
L = primes([10^5, 10^5 + 1000]); \\ pick a few primes
v = vector(#L, i, matdet(H * Mod(1,L[i])));

centerlift(chinese(v))

returns the determinant of H. (Assuming it is an integer less than half the product of elements of
L in absolute value, which it is.) In fact, we computed an homomorphic image of the determinant
in a few small finite fields, which admits a single integer representative given the size constraints.
We could also have made a single determinant computation modulo a big prime (or pseudoprime)
number, e.g nextprime(2 * B) if we know that the determinant is less than B in absolute value.
(Why is that 2 necessary?)

By the way, this is how you insert comments in a script: everything following a double back-
slash, up to the first newline character, is ignored. If you want comments which span many lines,
you can brace them between /* ... */ pairs. Everything in between will be ignored as well. For
instance as a header for the script above you could insert the following:

/* Homomorphic imaging scheme to compute the determinant of a classical

* integral matrix.

* TODO: Look up the explicit formula

*/

(I hope you did not waste your time copying this nonsense, did you?)

In addition, linear algebra over Z, i.e. work on lattices, can also be performed. Let us now
consider the lattice Λ generated by the columns of H in Z20 ⊂ R20. Since the determinant is
nonzero, we have in fact a basis. What is the structure of the finite abelian group Z20/Λ? Type
matsnf(H). Wow, 20 cyclic factors.

There is a triangular basis for Λ (triangular when expressed in the canonical basis), perhaps
it looks better than our initial one? Type mathnf(H). Hum, what if I also want the unimodular
transformation matrix? Simple : z = mathnf(H, 1); z[1] is the triangular HNF basis, and z[2]

is the base change matrix from the canonical basis to the new one, with determinant ±1. Try
matdet(z[2]), then H * z[2] == z[1]. Fine, it works. And z[1] indeed looks better than H.

Can we do better? Perhaps, but then we’d better drop the requirement that the basis be
triangular, since the latter is essentially canonical. Type

M = H * qflll(H)

Its columns give an LLL-reduced basis for Λ (qflll(H) itself gives the base change matrix).
The LLL algorithm outputs a nice basis for a lattice given by an arbitrary basis, where nice means
the basis vectors are almost orthogonal and short, with precise guarantees on their relations to the
shortest vectors. Not really spectacular on this example, though.

Let us try something else, there should be an integer relation between log 3, log 5 and log 15.
How to detect it?

u = [log(15), log(5), log(3)];

m = matid(3); m[3,] = round(u * 10^25);

16

v = qflll(m)[,1] \\ first vector of the LLL-reduced basis
u * v

Pretty close. In fact, lindep automates this kind of search for integer relations; try lindep(u).

Let us come back to Λ above, and our LLL basis in M. Type

G = M~*M \\ Gram matrix
m = qfminim(G, norml2(M[,1]), 100, 2);

This enumerates the vectors in Λ which are shorter than the first LLL basis vector, at most 100
of them. The final argument 2 instructs the function to use a safe (slower) algorithm, since the
matrix entries are rather large; trying to remove it should produce an error, in this case. There are
m[1] = 6 such vectors, and m[3] gives half of them (-m[3] would complete the lot): they are the
first 3 basis vectors! So these are optimally short, at least with respect to the Euclidean length.
Let us try

m = qfminim(G, norml2(M[,4]), 100, 2);

(The flag 2 instructs qfminim to use a different enumeration strategy, which is much faster when we
expect more short vectors than we want to store. Without the flag, this example requires several
hours. This is an exponential time algorithm, after all!) This time, we find a slew of short vectors;
matrank(m[3]) says the 100 we have are all included in a 2-dimensional space. Let us try

m = qfminim(G, norml2(M[,4]) - 1, 100000, 2);

This time we find 50,886 vectors of the requested length, spanning a 4-dimensional space, which is
actually generated by M[,1], M[,2] M[,3] and M[,5].

6. Using Transcendental Functions.

All the elementary transcendental functions and several higher transcendental functions are
provided: Γ function, incomplete Γ function, error function, exponential integral, Bessel functions
(H1, H2, I, J , K, N), confluent hypergeometric functions, Riemann ζ function, polylogarithms,
Weber functions, theta functions. More will be written if the need arises.

In this type of functions, the default precision plays an essential role. In almost all cases
transcendental functions work in the following way. If the argument is exact, the result is computed
using the current default precision. If the argument is not exact, the precision of the argument is
used for the computation. A note of warning however: even in this case the printed value is the
current real format, usually the same as the default precision. In the present chapter we assume
that your machine works with 64-bit long integers. If it is not the case, we leave it to you as a good
exercise to make the necessary modifications.

Let’s assume that we have 38 decimals of default precision (this is what we get automatically at
the start of a gp session on 64-bit machines). Type e = exp(1). We get the number e = 2.718 . . .
to 38 decimals. Let us check how many correct decimals we really have. Change the precision
to a substantially higher value, for example by typing \p 100. Then type e, then exp(1) once
again. This last value is the correct value of the mathematical constant e to 100 decimals, while
the variable e shows the value that was computed to 38 decimals. Clearly they coincide to exactly
38 significant digits.

So 38 digits are printed, but how many significant digits are actually contained in the variable
e? Type #e which indicates we have exactly 2 mantissa words. Since 2 ln(264)/ ln(10) ≈ 38.5 we
see that we have 38 or 39 significant digits (on 64-bit machines).

17

Come back to 38 decimals (\p 38). If we type exp(1.) you can check that we also obtain
38 decimals. However, type f = exp(1 + 1E-40). Although the default precision is still 38, you
can check using the method above that we have in fact 96 significant digits! The reason is that 1

+ 1E-40 is computed according to the PARI philosophy, i.e. to the best possible precision. Since
1E-40 has 39 significant digits and 1 has “infinite” precision, the number 1 + 1E-40 will have at
least 79 = 39 + 40 significant digits, hence f also.

Now type cos(1E-19). The result is printed as 1.0000 . . ., but is of course not exactly equal
to 1. Using #%, we see that the result has 4 mantissa words, giving us the possibility of having 77
correct significant digits. PARI gives you as much as it can, and since 3 mantissa words would have
given you only 57 digits, it uses 4. But why does it give so precise a result? Well, it is the same
reason as before. When x is close to 1, cos(x) is close to 1−x2/2, hence the precision is going to be
approximately the same as when computing this quantity, here 1− 0.5 ∗ 10−38 where 0.5 ∗ 10−38 is
considered with 38 significant digit accuracy. Hence the result will have approximately 38+38 = 76
significant digits.

This philosophy cannot go too far. For example, when you type cos(0), gp should give you
exactly 1. Since it is reasonable for a program to assume that a transcendental function never gives
you an exact result, gp gives you 1.000 . . . with as many mantissa word as the current precision.

Let’s see some more transcendental functions at work. Type gamma(10). No problem (type
9! to check). Type gamma(100). The number is now written in exponential format because the
default accuracy is too small to give the correct result. To get all digits, the most natural solution
is to increase the precision; since gamma(100) has 156 decimal digits, type \p 170 to be on the safe
side, then gamma(100) once again. Another one is to compute 99! directly.

Try gamma(1/2 + 10*I). No problem, we have the complex Γ function. Now type

t = 1000;

z = gamma(1 + I*t) * t^(-1/2) * exp(Pi/2*t) / sqrt(2*Pi)

norm(z)

The latter is very close to 1, in accordance with the complex Stirling formula.

Let’s play now with the Riemann zeta function. First turn on the timer (type #). Type
zeta(2), then Pi^2/6. This seems correct. Type zeta(3). All this takes essentially no time at all.
However, type zeta(3.1). You will notice that the time is substantially larger; if your machine is
too fast to see the difference, increase the precision to \p1000. This is because PARI uses special
formulas to compute zeta(n) when n is an integer.

Type zeta(1 + I). This also works. Now for fun, let us compute in a naive way the first
complex zero of zeta. We know that it is of the form 1/2 + i ∗ t with t between 14 and 15. Thus,
we can use the following series of instructions. But instead of typing them directly, write them into
a file, say zeta.gp, then type \r zeta.gp under gp to read it in:

{

t1 = 1/2 + 14*I;

t2 = 1/2 + 15*I; eps = 1E-50;

z1 = zeta(t1);

until (norm(z2) < eps,

z2 = zeta(t2);

if (norm(z2) < norm(z1),

t3 = t1; t1 = t2; t2 = t3; z1 = z2

18

);

t2 = (t1+t2) / 2.;

print(t1 ": " z1)

)

}

Don’t forget the braces: they tell gp that a sequence of instructions is going to span many lines.
We thus obtain the first zero to 25 significant digits.

By the way, you don’t need to type in the suffix .gp in the \r command: it is supplied by
gp if you forget it. The suffix is not mandatory either, but it is convenient to have all GP scripts
labeled in the same distinctive way. Also, some text editors, e.g. Emacs or Vim, will recognize GP
scripts as such by their suffix and load special colourful modes.

As mentioned at the beginning of this tutorial, some transcendental functions can also be
applied to p-adic numbers. This is as good a time as any to familiarize yourself with them. Type

a = exp(7 + O(7^10))

log(a)

All seems in order.

b = log(5 + O(7^10))

exp(b)

Is something wrong? We don’t recover the number we started with? This is normal: type

exp(b) * teichmuller(5 + O(7^10))

and we indeed recover our initial number. The Teichmüller character teichmuller(x) on Z∗p is the
unique (p− 1)-st root of unity which is congruent to x modulo p, assuming that x is a p-adic unit.

Let us come back to real numbers for the moment. Type agm(1,sqrt(2)). This gives the
arithmetic-geometric mean of 1 and

√
2, and is the basic method for computing complete elliptic

integrals. In fact, type

Pi/2 / intnum(t=0,Pi/2, 1 / sqrt(1 + sin(t)^2)),

and the result is the same. The elementary transformation x = sin(t) gives the mathematical
equality ∫ 1

0

dx√
1− x4

=
π

2AGM(1,
√

2)
,

which was one of Gauss’s remarkable discoveries in his youth.

Now type 2 * agm(1,I) / (1+I). As you see, the complex AGM also works, although one
must be careful with its definition. The result found is almost identical to the previous one. Do
you see why?

Finally, type agm(1, 1 + 7 + O(7^10)). So we also have p-adic AGM. Note however that
since the square root of a p-adic number is not in general an element of the same p-adic field, only
certain p-adic AGMs can be computed. In addition, when p = 2, the congruence restriction is that
agm(a,b) can be computed only when a/b is congruent to 1 modulo 16, and not 8 as could be
expected.

19

Now type ?8. This gives you the list of all transcendental functions. Instead of continuing with
more examples, we suggest that you experiment yourself with this list. Try integer, real, complex
and p-adic arguments. You will notice that some have not been implemented (or do not have a
reasonable definition).

7. Using Numerical Tools.

Although not written to be a numerical analysis package, PARI can nonetheless perform some
numerical computations. Since linear algebra and polynomial computations are treated somewhere
else, this section focuses on solving equations and various methods of summation.

You of course know the formula π = 4(1− 1
3 + 1

5 −
1
7 + · · ·) which is deduced from the power

series expansion of atan(x). You also know that π cannot be computed from this formula, since
the convergence is so slow. Right? Wrong! Type

\p 100

4 * sumalt(k=0, (-1)^k/(2*k + 1))

In a split second, we get π to 100 significant digits (type Pi to check).

Similarly, try

sumpos(k=1, k^-2)

Although once again the convergence is slow, the summation is rather fast; compare with the exact
result Pi^2/6. This is less impressive because a bit slower than for alternating sums, but still
useful.

Even better, sumalt can be used to sum divergent series! Type

zet(s) = sumalt(k=1, (-1)^(k-1) / k^s) / (1 - 2^(1-s))

Then for positive values of s different from 1, zet(s) is equal to zeta(s) and the series converges,
albeit slowly; sumalt doesn’t care however. For negative s, the series diverges, but zet(s) still
gives the correct result! (Namely, the value of a suitable analytic continuation.) Try zet(-1),
zet(-2), zet(-1.5), and compare with the corresponding values of zeta. You should not push
the game too far: zet(-100), for example, gives a completely wrong answer.

Try zet(I), and compare with zeta(I). Even (some) complex values work, although the sum
is not alternating any more! Similarly, try

sumalt(n=1, (-1)^n / (n+I))

More traditional functions are the numerical integration functions. Try intnum(t=1,2, 1/t)

and presto! you get 100 decimals of log(2). Look at Chapter 3 to see the available integration
functions.

With PARI, however, you can go further since complex types are allowed. For example, assume
that we want to know the location of the zeros of the function h(z) = ez − z. We use Cauchy’s
theorem, which tells us that the number of zeros in a disk of radius r centered around the origin is
equal to

1

2iπ

∫
Cr

h′(z)

h(z)
dz ,

where Cr is the circle of radius r centered at the origin. The function we want to integrate is

20

fun(z) = my(u = exp(z)); (u-1) / (u-z)

(Here u is a local variable to the function f: whenever a function is called, gp fills its argument list
with the actual arguments given, and initializes the other declared parameters and local variables
to 0. It will then restore their former values upon exit. If we had not declared u in the function
prototype, it would be considered as a global variable, whose value would be permanently changed.
It is not mandatory to declare in this way all parameters, but beware of side effects!)

Type now:

zero(r) = r/(2*Pi) * intnum(t=0, 2*Pi, real(fun(r*exp(I*t)) * exp(I*t)))

The function zero(r) will count the number of zeros of fun whose modulus is less than r: we
simply made the change of variable z = r ∗exp(i∗ t), and took the real part to avoid integrating the
imaginary part. Actually, there is a built-in function intcirc to integrate over a circle, yielding
the much simpler:

zero2(r) = intcirc(z=0, r, fun(z))

(This is a little faster than the previous implementation, and no less accurate.)

We may type \p 9 since we know that the result is a small integer (but the computations
should be instantaneous even at \p 100 or so), then zero(1), zero(1.5). The result tells us that
there are no zeros inside the unit disk, but that there are two (necessarily complex conjugate) in the
annulus 1 < |z| < 1.5. For the sake of completeness, let us compute them. Let z = x+ iy be such
a zero, with x and y real. Then the equation ez − z = 0 implies, after elementary transformations,
that e2x = x2+y2 and that ex cos(y) = x. Hence y = ±

√
e2x − x2 and hence ex cos(

√
e2x − x2) = x.

Therefore, type

fun(x) = my(u = exp(x)); u * cos(sqrt(u^2 - x^2)) - x

Then fun(0) is positive while fun(1) is negative. Come back to precision 38 and type

x0 = solve(x=0,1, fun(x))

z = x0 + I*sqrt(exp(2*x0) - x0^2)

which is the required zero. As a check, type exp(z) - z.

Of course you can integrate over contours which are more complicated than circles, but you
must perform yourself the variable changes, as we have done above to reduce the integral to a
number of integrals on line segments.

The example above also shows the use of the solve function. To use solve on functions of a
complex variable, it is necessary to reduce the problem to a real one. For example, to find the first
complex zero of the Riemann zeta function as above, we could try typing

solve(t=14,15, real(zeta(1/2 + I*t))),

but this does not work because the real part is positive for t = 14 and 15. As it happens, the
imaginary part works. Type

solve(t=14,15, imag(zeta(1/2 + I*t))),

and this now works. We could also narrow the search interval and type for instance

solve(t=14,14.2, real(zeta(1/2 + I*t)))

which would also work.

21

8. Polynomials.

First a word of warning: it is essential to understand the difference between exact and inexact
objects. Try

gcd(x - Pi, x^2 - 6*zeta(2))

We return a trivial GCD because the notion of GCD for inexact polynomials doesn’t make much
sense. A better quantitative approach is to use

polresultant(x - Pi, x^2 - 6*zeta(2))

A result close to zero shows that the GCD is nontrivial for small deformations of the inputs.
Without telling us what it is, of course. This being said, we will mostly use polynomials (and
power series) with exact coefficients in our examples.

The simplest way to input a polynomial, is to simply write it down, or use an explicit formula
for the coefficients and the function sum:

T = 1 + x^2 + 27*x^10;

T = sum(i = 1, 100, (i+1) * x^i);

but it is in much more efficient to create a vector of coefficients then convert it to a polynomial
using Pol or Polrev (Pol([1,2]) is x+ 2, Polrev([1,2]) is 2x+ 1) :

T = Polrev(vector(100, i, i));

for (i=1, 10^4, Polrev(vector(100, i, i))) \\ time: 60ms
for (i=1, 10^4, sum(i = 1, 100, (i+1) * x^i)) \\ time: 1,74ms

The reason for the discrepancy is that the explicit summation (of densely encoded polynomials) is
quadratic in the degree, whereas creating a vector of coefficients then converting it to a polynomial
type is linear.

We also have a few built-in classical polynomial families. Consider the 15-th cyclotomic poly-
nomial,

pol = polcyclo(15)

which is of degree ϕ(15) = 8. Now, type

r = polroots(pol)

We obtain the 8 complex roots of pol, given to 38 significant digits. To see them better, type \B:
they are given as pairs of complex conjugate roots, in some order. In fact, the function polroots

returns the real roots first, in increasing order, then the other roots by increasing absolute value of
their imaginary parts (so that pairs of complex conjugate roots appear together).

The roots of pol are by definition the primitive 15-th roots of unity. To check this, simply
type rc = r^15. Why, we get an error message! Fair enough, vectors cannot be multiplied, even
less raised to a power. However, type

rc = r^15.0

without forgetting the ‘.’ at the end. Now it works, because powering to a nonintegral exponent
is a transcendental function and hence is applied termwise. Note that the fact that 15.0 is a real
number which is representable exactly as an integer has nothing to do with the problem.

22

We see that the components of the result are very close to 1. It is however tedious to look
at all these real and imaginary parts. It would be impossible if we had many more. Let’s do it
automatically. Type

rr = round(rc)

exponent(rc - rr)

We see that rr is indeed all 1’s, and that the sup-norm of rc - rr is around 2−125, reasonable
enough when we work with 128 bits of accuracy! In fact, round itself already provides a built-in
rough approximation of the error:

rr = round(rc, &e)

Again, e contains the number of error bits when rounding rc to rr; in other words the sup norm
of rc− rr is bounded by 2−e.

Now type

pol = x^5 + x^4 + 2*x^3 - 2*x^2 - 4*x - 3

factor(pol)

factor(poldisc(pol))

fun(p) = factor(pol, O(p^10));

The polynomial pol factors over Q (or Z) as a product of two factors, and the primes dividing its
discriminant are 11, 23 and 37. We also created a function fun(p) which factors pol over Qp to
p-adic precision 10. Type

fun(5)

fun(11)

fun(23)

fun(37)

to see different splittings. You can use lift to convert p-adic numbers to neighbouring rational
numbers.

Similarly, type

lf(p) = lift(factor(pol, p));

lf(2)

lf(11)

lf(23)

lf(37)

which show the different factorizations, this time over Fp. In fact, even better: type successively

T = ffgen(3^3, ’t) \\ we want t to be a free variable
factor(pol, t)

The element T is printed as t but is actually defined modulo the irreducible polynomial t^3 + 2t

+ 2 over F3 (see t.mod): it defines the finite field F27. Note that we introduced a new variable t
to express elements in this nonprime field. More generally, the generic factor function allows a
second argument which describes the domain over which we want to factor, here F27 (and, above,
Qp to 10 digits of accuracy and Fp). Typing factor(pol) directly would factor it over Q, not
what we wanted.

Similarly, type

23

pol2 = x^4 - 4*x^2 + 16

fn = lift(factor(pol2, t^2 + 1))

and we get the factorization of the polynomial pol2 over the number field Q[t]/(t2 + 1), i.e. over
Q(i). Without the lift, the result would involve number field elements as t_POLMODs of the form
Mod(1+t, t^2+1), which are more explicit but less readable.

To summarize, in addition to being able to factor integers, you can factor polynomials over C
using polroots, over R using factor(,1.0), over finite fields using factor(, p), over Qp using
factor(, O(p^n)), over Q using factor, and over the number field Q[t]/(T) using factor(, T).
Note however that factor itself will guess intelligently over which ring you want to factor: try

pol = x^2 + 1;

factor(pol)

factor(pol *1.)

factor(pol * (1 + 0*I))

factor(pol * (1 + 0.*I))

factor(pol * Mod(1,2))

factor(pol * Mod(1, Mod(1,3)*(t^2+1)))

pol2 = x^2 + y^2;

factor(pol2)

factor(pol2 * Mod(1,5))

In the present version 2.17.0, it is not possible to factor over other base rings than the ones
mentioned above, but multivariate polynomials over those rings are allowed as shown in the last
examples. Other functions related to factoring are padicappr, polrootsmod, polrootspadic,
polsturm. Play with them a little.

Finally, type

polsym(pol2, 20)

where pol2 was defined above. This gives the sum of the k-th powers of the roots of pol2 up
to k = 20, of course computed using Newton’s formula and not using polroots. You notice that
every odd sum is zero (expected, since the polynomial is even), but also that the signs follow a
regular pattern and that the (nonzero) absolute values are powers of 2. This is true: prove it, and
more precisely find an explicit formula for the k-th symmetric power not involving (nonrational)
algebraic numbers.

9. Power Series.

Now let’s play with power series as we have done at the beginning. Type

N = 39;

8*x + prod(n=1,N, if(n%4, 1 - x^n, 1), 1 + O(x^(N+1)))^8

Apparently, only even powers of x appear. This is surprising, but can be proved using the theory
of modular forms. Note that we initialize the product to 1 + O(x^(N+1)), otherwise the whole
computation would be done with polynomials; this would first have been slightly slower and also
totally useless since the coefficients of x^(N+1) and above are irrelevant anyhow if we stop the
product at n = N.

24

While we are on the subject of modular forms (which, together with Taylor series expansions
are another great source of power series), type

\ps 122 \\ shortcut for default(seriesprecision, 122)

d = x * eta(x)^24

This gives the first 122 terms of the Fourier series expansion of the modular discriminant function
∆ of Ramanujan. Its coefficients give by definition the Ramanujan τ function, which has a number
of marvelous properties (look at any book on modular forms for explanations). We would like to
see its properties modulo 2. Type d%2. Hmm, apparently PARI doesn’t like to reduce coefficients
of power series, or polynomials for that matter, directly. Can we do it without writing a little
program? No problem. Type instead

lift(Mod(1,2) * d)

centerlift(Mod(1,3) * d)

and now this works like a charm. The pattern in the first result is clear; the pattern is less clear in
the second result, but nonetheless there is one. Of course, it now remains to prove it (see Antwerp
III or your resident modular forms guru).

10. Working with Elliptic Curves.

Now we are getting to more complicated objects. Just as with number fields which we will
meet later on, the first thing to do is to initialize them. That’s because a lot of data will be needed
repeatedly, and it’s much more convenient to have it ready once and for all. Here, this is done with
the function ellinit.

So type

e0 = ellinit([6,-3,9,-16,-14])

This computes a number of things about the elliptic curve defined by the affine equation

y2 + 6xy + 9y = x3 − 3x2 − 16x− 14 .

It is not that clear what all these funny numbers mean, except that we recognize the first few of
them as the coefficients we just input. To retrieve meaningful information from such complicated
objects (and number fields will be much worse), one uses so-called member functions. Type ?. to
get a complete list. Whenever ell appears in the right hand side, we can apply the corresponding
function to an object output by ellinit. (I’m sure you know how the other init functions will
be called now, don’t you? Oh, by the way, neither clgpinit nor pridinit exist.)

Let’s try it. The discriminant e0.disc is equal to 37, hence the conductor of the curve is
37. Of course in general it is not so trivial. In fact, although the equation of the curve is clearly
minimal (since the discriminant is 12th-power-free), it is not in standard reduced form, so type

e = ellminimalmodel(e0)

which gives the ell structure attached to the standard model, exactly as if we had used ellinit

on a reduced equation. For some related data, type

gr = ellglobalred(e0)

25

The first component gr[1] tells us that the conductor is 37 as we already knew. The second
component is a 4-component vector which allows us to get the minimal equation: in fact e is
ellchangecurve(e0, gr[2]). Type

q0 = [-2,2]

ellisoncurve(e0, q0)

q = ellchangepoint(q0,gr[2])

ellisoncurve(e, q)

The point q0 is on the curve, as checked by ellisoncurve, and we transferred it onto the minimal
model e, using ellchangepoint and the change of variable computed above. Note that ellchange-
point() is unusual among the elliptic curve functions in that it does not take an ell structure as
its first argument: in gp, points do not “know” which curve they are on, but to move a point from
one model to another we only need to know the coordinates of the point and the transformation
data here stored in gr[2]. Also, the point at infinity is represented as [0] on all elliptic curves;
this is the identity for the group law.

Here, q=[0,0] obviously lies on e, which has equation y2 +y = x3−x. Let us now play a little
with points on e. The group law on an elliptic curve is implemented with the functions elladd

for addition, ellsub for subtraction and ellmul for multiplication by an integer. For example,
the negative of q is ellsub(e,[0],q), and the double is obtained either as ellmul(e,q,2) or as
elladd(e,q,q).

Now q may be a torsion point. Type ellheight(e, q), which computes the canonical Neron-
Tate height of q. Note that ellheight does not assume that e is minimal ! (Although it is, making
things a little faster.) This is nonzero, hence q is not torsion. To see this even better, type

for(k = 1, 20, print(ellmul(e, q, k)))

and we see the characteristic parabolic explosion of the size of the points. (And another proof that
q is not torsion, assuming Mazur’s bound on the size of the rational torsion.) We could can also
type ellorder(e, q) which returns 0, telling us yet again that q is nontorsion. As a consistency
check, type

ellheight(e, ellmul(e, q,20)) / ellheight(e, q)

We indeed find 400 = 202 as it should be.

Notice how (almost) all those ell–prefixed functions take our elliptic curve as a first argument?
This will be true with number fields as well: whatever object was initialized by an ob–init function
will have to be used as a first argument of all the ob–prefixed functions. Conversely, you won’t be
able to use any such high-level function before you correctly initialize the relevant object.

Ok, let’s try another curve. Type

E = ellinit([0,-1,1,0,0])

q = [0,0]; ellheight(E, q)

This corresponds to the equation y2 + y = x3−x2 and an obvious rational point on it. Again from
the discriminant we see that the conductor is equal to 11, and if you type ellminimalmodel(E)

you will see that the equation for E is minimal. This time the height is exactly zero, hence q must
be a torsion point. Indeed, typing

for(k=1, 5, print(ellmul(E, q,k)))

ellorder(E, q) \\ simpler

26

we see in two different ways that q is a point of order 5. Moreover, typing

elltors(E)

shows that q generates all the torsion of E, which is cyclic of order 5.

Let’s try still another curve, y2 + y = x3 − 7x+ 6:

e = ellinit([0,0,1,-7,6])

ellglobalred(e)

As before, this is a minimal equation; now the conductor is 5077. There are some trivial integral
points on this curve, but let’s try to be more systematic. Typing

elltors(e)

shows that the torsion subgroup is trivial, so we don’t have to worry about torsion points. Next,
the function ellratpoints allows us to find rational points of small height

v = ellratpoints(e,1000)

The vector v contains all 130 rational points (x, y) on the curve whose x-coordinate is n/d with
|n| and |d| both less than 1000. Note that ellratpoints(e,10^6) takes less than 1 second, and
produces 344 points. Of course, these are grouped by pairs: if (x, y) is on the curve, its opposite is
(x,−y − 1) as

ellneg(e, [’x,’y])

shows. Note that there is no problem with manipulating points with formal coordinates. This is
large for a curve having such a small conductor. So we suspect (if we do not know already, since
this curve is quite famous!) that the rank of this curve must be large. Let’s try and put some order
into this. First, we eliminate one element in each pair of opposite points:

v = vecsort(v, 1, 8)

The argument 1 specifies a comparison function: we sort the points by first coordinate only, in par-
ticular two points with the same x-coordinate compare as equal; the 8 flag eliminates “duplicates”.
The same effect could be obtained in a more verbose way using an inline anonymous function

v = vecsort(v, (P,Q) -> sign(P[1]-Q[1]), 8)

We now order the points according to their canonical height:

hv = [ellheight(e,P) | P <- v];

v = vecextract(v, vecsort(hv,,1)) \\ indirect sort wrt h, then permute

It seems reasonable to take the numbers with smallest height as possible generators of the Mordell-
Weil group. Let’s try the first four: type

m = ellheightmatrix(e, v[1..4]); matdet(m)

Since the curve has no torsion, the determinant being close to zero implies that the first four points
are dependent. To find the dependency, it is enough to find the kernel of the matrix m. So type
matker(m): we indeed get a nontrivial kernel, and the coefficients are close to integers. Typing
elladd(e, v[1],v[3]) does indeed show that it is equal to v[4].

Taking any other four points, we seem to always find a dependency. Let’s find all dependencies.
Type

27

vp = v[1..3];

m = ellheightmatrix(e,vp);

matdet(m)

This is now clearly nonzero so the first 3 points are linearly independent, showing that the rank of
the curve is at least equal to 3. (In fact, e is the curve of smallest conductor having rank 3.) We
would like to see whether the other points are dependent: if Q is some point which is dependent on
v[1],v[2] and v[3] and

c = [ellheight(e, P, Q) | P <- vp]~

then m^(-1) * c will give the coefficients of the dependence relation. If these coefficients are not
close to integers, then there is no dependency, otherwise we can round and check rigourously using
a function such as the following:

ellcomb(e, P, L) =

{ my (Q = [0]);

for (i = 1, #P, Q = elladd(e, Q, ellmul(e, P[i], L[i])));

return (Q);

}

This is safer than using the matker function. Thus, type

mi = m^(-1);

w = vector(#v, k, mi * [ellheight(e, P, v[k]) | P <- vp]~)

wr = round(w, &e)

We “see” that the coefficients are all very close to integers, and we quantified it with the last
instruction: wr is the vector expressing all the components of v on its first 3, and 2−e gives an
upper bound on the maximum distance to an integer. The rigorous check is positive:

for (i=1, #w, if (v[i] != ellcomb(e,vp,wr[i]), error(i)));

No error! We must make two technical remarks at this point:

(1) Using the height pairing to find dependence relations as we have done only finds relations
modulo torsion; but in this example, the curve has trivial torsion, as we checked earlier.

(2) In the above calculation we were lucky that all the v[j] were Z-linear combinations of
v[1], v[2] and v[3] and not just Q-linear combinations; in general the results in w might have
given a vector of rationals: if k ≥ 2 is minimal such that kQ is in the subgroup generated by
v[1], v[2] and v[3], then the entries of matsolve(m, ellbil(e, vp,Q)) will be rationals with
common denominator k. This can be detected by using bestappr instead of round in the above.

We are thus led to strongly believe that the curve has rank exactly 3, with generators v[1],
v[2] and v[3], and this can be proved to be the case. Indeed, all this (and much more) is automated
in the built-in ellrank function:

[r, R, s, P] = ellrank(e);

Q = ellsaturation(e, P, 100)

We find r = R = 3 and a vector P containing 3 rational points. This performs 2-descent on the
curve: the rank belongs to [r,R] hence is equal to 3. The points in P are independent modulo
torsion : since #P = r = R, they generate a subgroup of finite index. The final ellsaturation
provides a new vector of points which is p-saturated for all primes p ≤ 100: the index of the
subgroup they generate is not divisible by any such prime.

28

In other situations, we could be missing some points and have #P < r: for instance

e = ellinit([-127^2, 0]);

ellrank(e)

does not find any point although the rank is 1; in this particular case (rank 1 and “small” conductor),
ellheegner finds the missing point, which happens to be a generator.

Let us explore a few more elliptic curve related functions. Keep our curve e of rank 3, and
type

v1 = [1,0]; z1 = ellpointtoz(e, v1)

v2 = [2,0]; z2 = ellpointtoz(e, v2)

We thus get the complex parametrization of the curve. To add the points v1 and v2, we should
of course type elladd(e, v1,v2), but we can also type ellztopoint(e, z1 + z2) which has the
disadvantage of giving complex numbers, but illustrates how the group law on e is obtained from
the addition law on C.

Type

f = x * Ser(ellan(e, 30))

This gives a power series which is the Fourier expansion of a modular form of weight 2 for
Γ0(5077). (This has been proved directly, before Wiles’s general result.) In fact, to find the
modular parametrization of the curve, type

modul = elltaniyama(e)

u = modul[1];

v = modul[2];

We can check in various ways that this indeed parametrizes the curve:

(v^2 + v) - (u^3 - 7*u + 6)

is close to 0 for instance, or simply that ellisoncurve(e,modul) returns 1. Now type

x * u’ / (2*v + 1)

and we see that this is equal to the modular form f found above; the quote ’ tells gp to take the
derivative of the expression with respect to its main variable. The functions u and v, considered
on the upper half plane with x = e2iπτ , are in fact modular functions for Γ0(5077).

The function ellan(e, 30) gives the first 30 coefficients an of the L-series of e. One can
also ask for a single coefficient: the millionth is ellak(e, 10^6). Note however that calling el-

lan(e,100000) is much faster than the equivalent vector(100000,k,ellak(e,k)). For a prime p,
ellap(e,p) is equivalent to ellak(e,p); this is the integer ap such that the number of points on
e over Fp is 1 + p−ap. (With the standard PARI distribution, ellap is the only way to obtain the
order of an elliptic curve over Fp in gp. The external package ellsea provides much more efficient
routines.)

Finally, let us come back to the curve E defined above by E = ellinit([0,-1,1,0,0]),
which had an obvious rational 5-torsion point. The sign of the functional equation, given by
ellrootno(E), is +1. Assuming the rank parity conjecture, it follows that the Mordell-Weil group
of E has even rank. The value of the L-function of E at 1

ls = lfun(E, 1)

29

is definitely nonzero, so E has rank 0. According to the Birch and Swinnerton-Dyer conjecture,
which is proved for this curve, ls is given by the following formula (in this case):

L(E, 1) =
Ω · c · |III|
|Etors|2

,

where Ω is the real period of E, c is the global Tamagawa number, |III| is the order of the Tate-
Shafarevich group, and Etors is the torsion group of E.

Now we know many of these quantities: Ω is equal to E.omega[1] The global Tamagawa
number c is given by elltamagawa(E) and is 1 We already know that the torsion subgroup of E
contains a point of order 5, and typing elltors(E) shows that it is of order exactly 5. So type

ls * 25/E.omega[1]

This shows that III must be the trivial group. A short hand for Ω·c
|Etors|2 is ellbsd(E), so the previous

line can be written as

ls / ellbsd(E)

For more detailed information on the local reduction of an elliptic curve at a specific prime p,
use the function elllocalred(E,p); the second component gives the Kodaira symbol in an encoded
form. See the manual or online help for details.

11. Working in Quadratic Number Fields.

The simplest of all number fields outside Q are quadratic fields and are the subject of the
present section. We shall deal in the next one with general number fields (including Q and quadratic
fields!), and one should be aware that all we will see now has a more powerful, in general easier to
use, equivalent in the general context. But possibly much slower.

Such fields are characterized by their discriminant. Even better, any nonsquare integer D
congruent to 0 or 1 modulo 4 is the discriminant of a specific order in a quadratic field. We can
check whether this order is maximal with isfundamental(D). Elements of a quadratic field are of
the form a + bω, where ω is chosen as

√
D/2 if D is even and (1 +

√
D)/2 if D is odd, and are

represented in PARI by quadratic numbers. To initialize working in a quadratic order, one starts
by the command w = quadgen(D,’w).

This sets w equal to ω as above, and is printed w. If you need several quadratic orders at the
same time, you can use different variable names:

w1 = quadgen(-23,’w1)

w2 = quadgen(-15,’w1)

In addition to elements of a quadratic order, we also want to be able to handle ideals of such
orders. In the quadratic case, it is equivalent to handling binary quadratic forms. Quadratic forms
are triples (a, b, c) representing the form ax2 + bxy + cy2. Such a form will be printed as, and can
be created by, Qfb(a,b,c).

Such forms can be multiplied, divided, powered as many PARI objects using the usual opera-
tions, and they can also be reduced using the function qfbred or qfbredsl2 (which also returns the
unimodular transformation matrix). One can also use explicitly qfbcomp / qfbpow (same as mul-
tiplication) and qfbcompraw / qfbpowraw (composition without reduction) (It is not the purpose

30

of this tutorial to explain what all these things mean.) In addition, Shanks’s NUCOMP algorithm
has been implemented (functions qfbnucomp and qfbnupow), and this is usually a little faster.

Finally, you have at your disposal the functions qfbclassno which (usually) gives the class
number, the function qfbhclassno which gives the Hurwitz class number, and the much more
sophisticated quadclassunit function which gives the class number and class group structure.

Let us see examples of all this at work.

Type qfbclassno(-10007). gp tells us that the result is 77. However, you may have noticed
in the explanation above that the result is only usually correct. This is because the implementers of
the algorithm have been lazy and have not put the complete Shanks algorithm into PARI, causing
it to fail in certain very rare cases. In practice, it is almost always correct, and the much more
powerful quadclassunit program, which is complete (at least for fundamental discriminants) can
give confirmation; but now, under the Generalized Riemann Hypothesis!

So we may be a little suspicious of this class number. Let us check it. First, we need to find
a quadratic form of discriminant −10007. Since this discriminant is congruent to 1 modulo 8, we
know that there is an ideal of norm equal to 2, i.e. a binary quadratic form (a, b, c) with a = 2.
To compute it we type f = qfbprimeform(-10007, 2). OK, now we have a form. If the class
number is correct, the very least is that this form raised to the power 77 should equal the identity.
Type f^77. We get a form starting with 1, i.e. the identity. Raising f to the powers 11 and 7 does
not give the identity, thus we now know that the order of f is exactly 77, hence the class number
is a multiple of 77. But how can we be sure that it is exactly 77 and not a proper multiple? Well,
type

sqrt(10007)/Pi * prodeuler(p=2,500, 1./(1 - kronecker(-10007,p)/p))

This is nothing else than an approximation to the Dirichlet class number formula. The function
kronecker is the Kronecker symbol, in this case simply the Legendre symbol. Note also that we
have written 1./(1 - . . .) with a dot after the first 1. Otherwise, PARI may want to compute the
whole thing as a rational number, which would be terribly long and useless. In fact PARI does no
such thing in this particular case (prodeuler is always computed as a real number), but you never
know. Better safe than sorry!

We find 77.77, pretty close to 77, so things seem in order. Explicit bounds on the prime limit
to be used in the Euler product can be given which make the above reasoning rigorous.

Let us try the same thing with D = −3299. qfbclassno and the Euler product convince
us that the class number must be 27. However, we get stuck when we try to prove this in the
simple-minded way above. Indeed, we type f = qfbprimeform(-3299, 3) (2 is not the norm of
a prime ideal but 3 is), and we see that f raised to the power 9 is equal to the identity. This is
the case for any other quadratic form we choose. So we suspect that the class group is not cyclic.
Indeed, if we list all 9 distinct powers of f, we see that qfbprimeform(-3299, 5) is not on the list,
although its cube is as it must. This implies that the class group is probably equal to a product
of a cyclic group of order 9 by a cyclic group of order 3. The Euler product plus explicit bounds
prove this.

Another way to check it is to use the quadclassunit function by typing for example

quadclassunit(-3299)

Now, if we believe in GRH, the class group is as we thought (see Chapter 3 for a complete description
of this function). Note that using the even more general function bnfinit (which handles general

31

number fields and gives more complicated results), we could certify this result, i.e remove the GRH
assumption. Let’s do it, type

bnf = bnfinit(x^2 + 3299); bnfcertify(bnf)

A nonzero result (here 1) means that everything is ok. Good, but what did we certify after all?
Let’s have a look at this bnf (just type it!). Enlightening, isn’t it? Recall that the init functions
(we’ve already seen ellinit) store all kind of technical information which you certainly don’t care
about, but which will be put to good use by higher level functions. That’s why bnfcertify could
not be used on the output of quadclassunit: it needs much more data.

To extract sensible information from such complicated objects, you must use one of the many
member functions (remember: ?. to get a complete list). In this case bnf.clgp which extracts the
class group structure. This is much better. Type %.no to check that this leading 27 is indeed what
we think it is and not some stupid technical parameter. Note that bnf.clgp.no would work just
as well, or even bnf.no!

As a last check, we can request a relative equation for the Hilbert class field of Q(
√
−3299):

type quadhilbert(-3299). It is indeed of degree 27 so everything fits together.

Working in real quadratic fields instead of complex ones, i.e. with D > 0, is not very different.

The same quadgen function is used to create elements. Ideals are again represented by binary
quadratic forms (a, b, c), this time indefinite. However, the Archimedean valuations of the number
field start to come into play, hence in fact quadratic forms with positive discriminant can also be
represented as a pair [q, d] where q = Qfb(a, b, c) is the indefinite quadratic form ax2 + bxy + cy2,
and d ∈ R is a “distance” component, as defined by Shanks and Lenstra.

The form q can be multiplied, divided, powered, and they can be reduced using qfbred. To
compose extended forms [q, d] and [q, d′], one may use qfbcomp and qfbpow but ordinary multipli-
cation and powerings also accept pairs.

The qfbred function applies a succession of elementary reduction steps corresponding essen-
tially to a continued fraction expansion, and a single one of these steps can be achieved by adding
an (optional) flag to the arguments of qfbred. Again, the function qfbprimeform gives a prime
form, but the form which is given corresponds to an ideal of prime norm which is usually not
reduced. If desired, it can be reduced using qfbred.

Finally, you still have at your disposal the function qfbclassno which gives the class number
(this time guaranteed correct), quadregulator which gives the regulator, and the much more
sophisticated quadclassunit giving the class group’s structure and its generators, as well as the
regulator. The qfbclassno and quadregulator functions use an algorithm which is O(

√
D), hence

become very slow for discriminants of more than 10 digits. quadclassunit can be used on a much
larger range.

Let us see examples of all this at work and learn some little known number theory at the same
time. First of all, type

D = 3 * 3299; qfbclassno(D)

We see that the class number is 3. (We know in advance that it must be divisible by 3 from the D

= -3299 case above and Scholz’s mirror theorem.) Let us create a form by typing

f = qfbred(qfbprimeform(D,2))

32

This gives us a prime ideal of norm equal to 2. Is this ideal principal? Well, one way to check this,
which is not the most efficient but will suffice for now, is to look at the complete cycle of reduced
forms equivalent to f. Type

g = f; until(g == f, g = qfbred(g, 1); print(g))

(the flag 1 in qfbred means to perform a single reduction step). We see that we come back to the
form f without meeting the principal form (starting with ±1) in the cycle, so the ideal corresponding
to f is not principal.

Since the class number is equal to 3, we know however that f^3 will be a principal ideal αZK .
How do we find α? For this, type

f3 = qfbpowraw(f, 3)

This computes the cube of f, without reducing it. Hence it corresponds to an ideal of norm
equal to 8 = 23, so we already know that the norm of α is equal to ±8. We need more information,
and this is given by supplementing the form by a distance component d, a real number that tracks
archimedean information that will eventually allows to recover α: we call such a pair [f, d] an
extended form.

F3 = [f3, 0.0]; /* initialize */

while(abs(component(F3[1], 1)) != 1, F3 = qfbred(F3, 1); print(F3))

d = F3[2];

We reduce the form F3 until we reach the unit form (exactly 6 times), then extract the
Archimedean component, say d = 8.59 . . . By definition of this distance, we know that

α

σ(α)
= ±e2d,

where σ denotes real conjugation in our quadratic field. Thus, if we type

Na = 8; /* |Norm(alpha)| */

a = sqrt(Na * exp(2*d))

sa = Na / a

we know that up to sign, a and sa are numerical approximations of α and σ(α). Of course, α can
always be chosen to be positive, and a quick numerical check shows that the difference of a and
sa is close to an integer, and not the sum, so that in fact the norm of α is equal to −8 and the
numerical approximation to σ(α) is −sa. Thus we type

p = x^2 - round(a-sa)*x - 8

and this (x2 − 15221x− 8) is the characteristic polynomial of α. (A more user-friendly, but much
less efficient, way to obtain the same result is algdep(a,2) or algdep(sa,2).) We can check that
the discriminant of this polynomial is a square multiple of D using issquare(poldisc(p) / D), so
α is indeed in our field. More precisely, solving for α and using the numerical approximation that
we have to resolve the sign ambiguity in the square root, we get explicitly α = (15221 + 153

√
D)/2.

Note that this can also be done automatically using the functions polred and modreverse, as
we will see later in the general number field case. Or by solving a system of 2 linear equations
in 2 variables. (Exercise: now that we have α, check that it is indeed a generator of the ideal
corresponding to the form f3.)

Let us now play a little with cycles. Type

33

D = 10^7 + 1

quadclassunit(D)

We get as a result a 5-component vector, which tells us that (under GRH) the class number is equal
to 1, and the regulator R is approximately equal to 2641.5. You may certify this with

bnf = bnfinit(x^2 - D, 1); \\ insist on finding fundamental unit

bnfcertify(bnf);

which is fast for small D but costly in general. Indeed bnfcertify needs the fundamental unit,
which is large: we expect coefficients of about R/ log(10) ≈ 1147 digits, see bnf.fu! (We inserted
the flag 1 so that bnfinit would at least compute this fundamental unit in factored form, which
allows to reconstruct bnf.fu; bnfcertify will often fail without it.) On the other hand, you can
also try quadunit(D,’w). Impressive, isn’t it? (You can check that its logarithm is indeed equal
to the regulator.)

Let’s now assume that we want the regulator R to 500 decimals, say. (Without cheating and
computing the fundamental unit exactly first!) This can be computed with no effort, simply from
the crude approximation 2641.5 above. This time, we start with the unit form. Type:

u = [qfbprimeform(D, 1), 0.0];

R = 2641.5; /* rough approximation */

This initializes the distance to 0. Now type f = qfbred(u, 1). This is the first form encountered
along the principal cycle. For the moment, keep the precision low, for example the initial default
precision. The distance from the identity to f is around 4.253, given by the second component.
The distance function is approximately additive. Since we want a total distance of R, this should
be encountered approximately at R/f [2] ≈ 621 times the distance of f. Hence, as a first try, we
type f ^621. Oops, we overshoot: the distance is now 3173.018 . . . > R. Now we can refine our
initial estimate: we should be close to the correct distance if we raise f to the power 621 ∗R/3173
which is a little less than 517. Now if we compute f^517 we hit the principal form right on the dot.
This is not a lucky accident: we must land extremely close to the correct target using this method,
and usually at most one reduction correction step is necessary. And the distance component can
tell us where we are along the cycle.

Up to now, we have only worked to low precision. The goal was to obtain this unknown integer
517. Note that this number has no mathematical significance: indeed the notion of reduction of
a form with positive discriminant is not well defined since there are usually many reduced forms
equivalent to a given form. (In fact, f^516 also yields the principal form, so you can replace 517
by 516 if you wish!)

However, when PARI computes with extended forms, the specific order and reductions that
it performs are dictated entirely by the coefficients of the quadratic form itself, and not by the
distance component, hence the precision used has no effect.

We now start again by setting the precision to (for example) 500 decimal digits, we set u =

precision(u, 500) (why is this necessary?), and then qfbred(u, 1)^517 (or to the power 516).
We already know that we land on the unit form, and the distance component gives us the regulator
to 500 decimal places with no effort at all.

In a similar way, we could obtain the so-called compact representation of the fundamental unit
itself, or p-adic regulators. I leave this as exercises for the interested reader.

34

You can try the quadhilbert function on that field but, since the class number is 1, the result
won’t be that exciting. If you try it on our preceding example (3 ∗ 3299) it should take about 2
seconds.

Time for a coffee break?

12. Working in General Number Fields.

12.1. Defining equations and elements in the field.

The situation here is of course more difficult. First of all, remembering what we did with
elliptic curves, we need to initialize data linked to our base number field, with something more
serious than quadgen. For example assume that we want to work in the number field K defined by
one of the roots of the equation x4 + 24x2 + 585x+ 1791 = 0. This is done by typing

T = x^4 + 24*x^2 + 585*x + 1791

nf = nfinit(T)

We get an nf structure but, thanks to member functions, we do not need to know anything about
it. If you type nf.pol, you will get the polynomial T which you just input. nf.sign yields the
signature (r1, r2) of the field, nf.disc the field discriminant, nf.zk an integral basis, etc. . . .

The integral basis is expressed in terms of a generic root x of T and we notice it’s very far
from being a power integral basis, which is a little strange for such a small field. Hum, let’s check
that: poldisc(T)? Ooops, small wonder we had such denominators, the index of the power order
Z[x]/(T) in the maximal order ZK is, well, nf.index. Note that this is also given by

sqrtint(poldisc(nf.pol) / nf.disc)

Anyway, that’s 3087, we don’t want to work with such a skewed polynomial! So, we type

A = polredbest(T)

The polredbest function usually gives a simpler polynomial, where red stands for “reduction” and
best for “best effort”, meaning that the function strives to find a good defining polynomial while
guaranteeing that the result is found quickly (in polynomial time). The polynomial x4−x3−21x2 +
17x+ 133 defines the same field as T , with somewhat smaller coefficients. Type poldisc(A), this
is better, but maybe not optimal yet (the index is still 7).

In fact, had you typed nfinit(T, 3), nfinit would first have tried to find a good polynomial
defining the same field (i.e. one with small index) before proceeding. It’s not too late, let’s redefine
our number field:

NF = nfinit(nf, 3)

The output is a two-component vector. The first component is the new nf: type

nf = NF[1];

If you type nf.pol, you notice that gp indeed replaced your bad polynomial T by the better one
A. (Small wonder, nfinit internally called polredbest.) The second component enables you to
switch conveniently to our new polynomial.

Namely, call θ a root of our initial polynomial T , and α a root of A. These are algebraic
numbers, and as already mentioned are represented as polmods. For example, in our special case
θ and α are equal to the polmods

35

THETA = Mod(x, x^4 + 24*x^2 + 585*x + 1791)

ALPHA = Mod(x, x^4 - x^3 - 21*x^2 + 17*x + 133)

respectively. Here we are considering only the algebraic aspect, and hence ignore completely which
root θ or α is chosen.

Now you may have a number of elements of your number field which are expressed as polmods
with respect to your old polynomial, i.e. as polynomials in θ. Since we are now going to work with
α instead, it is necessary to convert these numbers to a representation using α. This is what the
second component of NF is for: type C = NF[2], you get

Mod(-10/7*x^3 + 43/7*x^2 + 73/7*x - 64, x^4 - x^3 - 21*x^2 + 17*x + 133)

meaning that θ = − 10
7 α

3 + 43
7 α

2 + 73
7 α − 64, and hence the conversion from a polynomial in θ to

one in α is easy, using subst. (We could get this polynomial from polred as well, try polred(T,

2).) If we want the reverse, i.e. to go back from a representation in α to a representation in
θ, we use the function modreverse on this polmod C. Try it. The result has a big denominator
(1029) essentially because our initial polynomial T was so bad. By the way, to get that 1029, you
should type denominator(content(C)). Trying denominator by itself would not work since the
denominator of a polynomial is defined to be 1 (and its numerator is itself). The reason for this is
that we think of a polynomial as a special case of a rational function.

From now on, we forget about T, and use only the polynomial A defining α, and the components
of the vector nf which gives information on our number field K. Type

u = Mod(x^3 - 5*x^2 - 8*x + 56, A) / 7

This is an element in K. There are three equivalent representations for number field elements:
polmod, polynomial, and column vector giving a decomposition in the integral basis nf.zk (not
on the power basis (1, x, x2, . . .)). All three are equally valid when the number field is understood
(is given as first argument to the function). You will be able to use any one of them as long as
the function you call requires an nf argument as well. However, most PARI functions will return
elements as column vectors. It’s an important feature of number theoretic functions that, although
they may have a preferred format for input, they will accept a wealth of other different formats.
We already saw this for nfinit which accepts either a polynomial or an nf. It will be true for
ideals, congruence subgroups, etc.

Let’s stick with elements for the time being. How does one go from one representation to the
other? Between polynomials and polmods, it’s easy: lift and Mod will do the job. Next, from
polmods/polynomials to column vectors: type v = nfalgtobasis(nf, u). So u = α3−α2−α+8,
right? Wrong! The coordinates of u are given with respect to the integral basis, not the power
basis (1, α, α2, α3) (and they don’t coincide, type nf.zk if you forgot what the integral basis looked
like). As a polynomial in α, we simply have u = 1

7 (α3 − 5α2 − 8α+ 56), which is trivially deduced
from the original polmod representation!

Of course v = nfalgtobasis(nf, lift(u)) would work equally well. Indeed we don’t need
the polmod information since nf already provides the defining polynomial. To go back to polmod
representation, use nfbasistoalg(nf, v). Notice that u is an algebraic integer since v has integer
coordinates (try denominator(v) == 1, which is of course overkill here, but not so in a program).

Let’s try this out. We may for instance compute u^3. Try it. Or, we can type 1/u. Better yet,
if we want to know the norm from K to Q of u, we type norm(u) (what else?); trace(u) works
as well. Notice that none of this would work on polynomials or column vectors since you don’t
have the opportunity to supply nf! But we could use nfeltpow(nf,u,3), nfeltdiv(nf,1,u) (or

36

nfeltpow(nf,u,-1)) which would work whatever representation was chosen. Of course, there is
also an nfeltnorm function (and nfelttrace as well). You can also consider (u) as a principal
ideal, and just type

idealnorm(nf,u)

Of course, in this way, we lose the sign information. We will talk about ideals later on.

If we want all the symmetric functions of u and not only the norm, we type charpoly(u).
Note that this gives the characteristic polynomial of u, and not in general the minimal polynomial.
We have minpoly(u) for this.

Exercise. Find a simpler expression for u.

Now let’s work on the field itself. The nfinit command already gave us some information.
The field is totally complex (its signature nf.sign is [0, 2]), its discriminant nf.disc is 18981
and nf.zk is an integral basis. The Galois group of its Galois closure can be obtained by typing
polgalois(A). The answer ([8,-1,1], or [8,-1,1,"D(4)"] if the galdata package is installed)
shows that it is equal to D4, the dihedral group with 8 elements, i.e. the group of symmetries of a
square.

This implies that the field is “partially Galois”, i.e. that there exists at least one nontrivial
field isomorphism which fixes K, exactly one in this case. Type nfgaloisconj(nf). The result
tells us that, apart from the trivial automorphism, the map

α 7→ 1

7
(−α3 + 5α2 + α− 49)

is the only field automorphism.

nfgaloisconj(nf);

s = Mod(%[2], A)

charpoly(s)

and we obtain A once again.

Let us check that s is of order 2: subst(lift(s), x, s). It is. We may express it as a
matrix:

w = Vec(matid(4)) \\ canonical basis
v = vector(#w, i, nfgaloisapply(nf, s, w[i]))

M = Mat(v)

The vector v contains the images of the integral basis elements (as column vectors). The last
statement concatenates them into a square matrix. So, M gives the action of s on the integral basis.
Let’s check M^2. That’s the identity all right.

The fixed field of this automorphism is going to be the only nontrivial subfield of K. I
seem to recall that polred told us this was the third cyclotomic field. Let’s check this: type
nfsubfields(nf). Indeed, there’s a quadratic subfield, but it’s given by T = x^2 + 22*x + 133

and I don’t recognize it. But nfisisom(T, polcyclo(3)) indeed tells us that the fields Q[x]/(T)
and Q[x]/(x2 + x + 1) are isomorphic. (In fact, polred(T) would tell us the same, but does not
correspond to a foolproof test: polred could have returned some other polynomials.)

We may also check that k = matker(M-1) is two-dimensional, then z = nfbasistoalg(nf,

k[,2]) generates the quadratic subfield. Notice that 1, z and u are Q-linearly dependent, and in

37

fact Z-linearly as well. Exercise: how would you check these two assertions in general? (Answer:
concat, then respectively matrank or matkerint (or qflll)). z = charpoly(z), z = gcd(z,z’)

and polred(z) tell us that we found back the same subfield again (as we ought to!).

Final check: type nfrootsof1(nf). Again we find that K contains a cube root of unity, since
the torsion subgroup of its unit group has order 6. The given generator happens to be equal to u.

Additional comment. (you are no longer supposed to skip this, but do as you wish):

Before working with ideals, let us note one more thing. The main part of the work of polred
or nfinit(T) is to compute an integral basis, i.e. a Z-basis of the maximal order ZK of K. This
implies factoring the discriminant of the polynomial T , which is often not feasible. The situation
may be improved in many ways:

1) First, it is often the case that our number field is of quite a special type. For example,
one may know in advance some prime divisors of the discriminant. Hence we can “help” PARI by
giving it that information. More precisely, we can use the function addprimes to inform PARI to
keep on eye for these prime numbers. Do it only for big primes ! (Say, larger than primelimit.)

2) The second way in which the situation may be improved is that often we do not need the
complete information on the maximal order, but only require that the order be p-maximal for a
certain number of primes p — but then, we may not be able to use functions which require a genuine
nf. The function nfbasis specifically computes the integral basis and is not much quicker than
nfinit so is not very useful in its standard use. But we can optionally provide a list of primes:
this returns a basis of an order which is p-maximal at the given primes. For example coming back
to our initial polynomial T , the discriminant of the polynomial is 37 · 76 · 19 · 37. If we only want a
7-maximal order, we simply type

nfbasis([T, [7]])

Of course, nfbasis([T, [2,3,5,7]]) would return an order which is maximal at 2, 3, 5, 7. A
variant offers a nice generalization:

nfbasis([T, 10^5])

will return an order which is maximal at all primes less than 105.

3) Building on the previous points, if the field discriminant is y-smooth (never mind the
polynomial discriminant), up to a few big primes known to addprimes, then bas = nfbasis(T,

y) returns a basis for the maximal order! We can then input the resulting basis to nfinit, as
nfinit([T, bas]). Better: the [T, listP] format can be directly used with nfinit, where listP
specifies a finite list of primes in one of the above ways (explicit list or primes up to some bound),
and the result can be unconditionally certified, independently of the listP parameter:

T = polcompositum(x^7-2, polcyclo(5))[1];

K = nfinit([T, [2,5,7]]);

nfcertify(K)

The output is a list of composite integers whose complete factorization must be computed in order
to certify the result (which may be very hard, hence is not done on the spot). When the list is
empty, as here, the result is unconditional

nfcertify(nf)

38

12.2. Ideals.

We now want to work with ideals and not only with elements. An ideal can be represented
in many different ways. First, an element of the field (in any of the various guises seen above)
will be considered as a principal ideal. Then the standard representation is a square matrix giving
the Hermite Normal Form (HNF) of a Z-basis of the ideal expressed on the integral basis nf.zk.
Standard means that most ideal related functions will use this representation for their output.

Prime ideals can be represented in a special form as well (see idealprimedec) and all ideal-
related functions will accept them. On the other hand, the function idealtwoelt can be used to
find a two-element ZK-basis of a given ideal (as aZK + bZK , where a and b belong to K), but this
is not a valid representation for an ideal under gp, and most functions will choke on it (or worse,
take it for something else and output a meaningless result). To be able to use such an ideal, you
will first have to convert it to HNF form.

Whereas it’s very easy to go to HNF form (use idealhnf(nf,id) for valid ideals, or ideal-

hnf(nf,a,b) for a two-element representation as above), it’s a much more complicated problem
to check whether an ideal is principal and find a generator. In fact an nf does not contain enough
data for this particular task. We’ll need a Buchmann Number Field, or bnf, for that. In particular,
we need the class group and fundamental units, at least in some approximate form. More on this
later (which will trivialize the end of the present section).

Let us keep our number field K as above and its nf structure. Type

P = idealprimedec(nf,7)

This gives the decomposition of the prime number 7 into prime ideals. We have chosen 7 because
it divides nf.index (in fact, is equal to it), hence is the most difficult case to treat.

The result is a vector with 4 components, showing that 7 is totally split in the field K into
prime ideals of norm 7 (you can check: idealnorm(nf,P[1])). Let us take one of these ideals, say
the first, so type

pr = P[1]

We obtain its inertia and residue degree as pr.e and pr.f, and its two generators as pr.gen.
One of them is pr.p = 7, and the other is guaranteed to have valuation 1 at pr. What is the
Hermite Normal Form of this ideal? No problem:

idealhnf(nf,pr)

and we have the desired HNF. Let’s now perform ideal operations. For example type

idealmul(nf, pr, idealmul(nf, pr,pr))

or more simply

pr3 = idealpow(nf, pr,3)

to get the cube of the ideal pr. Since the norm of this ideal is equal to 343 = 73, to check that it
is really the cube of pr and not of other ideals above 7, we can type

for(i=1, #P, print(idealval(nf, pr3, P[i])))

and we see that the valuation at pr is equal to 3, while the others are equal to zero. We could see
this as well from idealfactor(nf, pr3).

39

Let us now work in the class group “by hand” (we shall see simpler ways later). We shall work
with extended ideals: an extended ideal is a pair [A, t], where A is an ordinary ideal as above,
and t a number field element; this pair represents the ideal (t)A.

id3 = [pr3, 1]

r0 = idealred(nf, id3)

The input id3 is an extended ideal: pr3 together with 1 (trivial factorization). The new extended
ideal r0 is equal to the old one, in the sense that the products (t)A are the same. It contains a
“reduced” ideal equivalent to pr3 (modulo the principal ideals), and a generator of the principal
ideal that was factored out.

Now, just for fun type

r = r0; for(i=1,3, r = idealred(nf,r, [1,5]); print(r))

The ideals in the third r and initial r0 are equal, say (t)A = (t0)A: this means we have found a
unit (t0/t) in our field, and it is easy to extract this unit given the extended component:

t0 = r0[2]; t = r[2];

u = nfeltdiv(nf, t0, t)

u = nfbasistoalg(nf, u)

The last line recovers the unit as an algebraic number. Type

ch = charpoly(u)

and we obtain the characteristic polynomial ch of u again. (Whose constant coefficient is 1, hence
u is indeed a unit.)

There is of course no reason for u to be a fundamental unit. Let us see if it is a square. Type

F = factor(subst(ch, x, x^2))

We see that ch(x^2) is a product of 2 polynomials of degree 4, hence u is a square. (Why?) We
now want to find its square root. A simple method is as follows:

NF = subst(nf,x,y);

r = F[1,1] % (x^2 - nfbasistoalg(NF, u))

to find the remainder of the characteristic polynomial of u2 divided by x^2 - u. This is a poly-
nomial of degree 1 in x, with polmod coefficients, and we know that u2, being a root of both
polynomials, is the root of r, hence can be obtained by typing

u2 = -polcoef(r,0) / polcoef(r,1)

There is an important technicality in the above: why did we need to substitute NF to nf? The
reason is that data related to nf is given in terms of the variable x, seen modulo nf.pol; but we
need x as a free variable for our polynomial divisions. Hence the substitution of x by y in our nf

data.

The most natural method is to try directly

nffactor(nf, y^2 - u)

Except that this won’t work for the same technical reason as above: the main variable of the
polynomial to be factored must have higher priority than the number field variable. This won’t be
possible here since nf was defined using the variable x which has the highest possible priority. So
we need to substitute variables around:

40

nffactor(NF, x^2 - nfbasistoalg(NF, subst(lift(u),x,y)))

(Of course, with better planning, we would just have defined nf in terms of the ’y variable, to
avoid all these substitutions.)

A much simpler approach is to consider the above as instances of a discrete logarithm problem,
where we want to express some elements an abelian group (of finite type) in terms of explicitly given
generators, and transfer all computations from abstract groups like Cl(K) and Z∗K to products of
simpler groups like Zn or Z/dZ. We shall do exactly that in the next section.

Before that, let us mention another famous (but in fact, simpler) discrete logarithm problem,
namely the one attached to the invertible elements modulo an ideal: (ZK/I)∗. Just use idealstar

(this is an init function) and ideallog.

Many more functions on ideals are available. We mention here the complete list, referring to
Chapter 3 for detailed explanations:

idealadd, idealaddtoone, idealappr, idealchinese, idealcoprime, idealdiv, idealfac-
tor, idealhnf, idealintersect, idealinv, ideallist, ideallog, idealmin, idealmul, ideal-
norm, idealpow, idealprimedec, idealred, idealstar, idealtwoelt, idealval, nfisideal.

We suggest you play with these to get a feel for the algebraic number theory package. Remem-
ber that when a matrix (usually in HNF) is output, it is always a Z-basis of the result expressed
on the integral basis nf.zk of the number field, which is usually not a power basis.

12.3. Class Groups and Units, bnf.

Apart from the above functions you have at your disposal the powerful function bnfinit,
which initializes a bnf structure, i.e. a number field with all its invariants (including class group
and units), and enough technical data to solve discrete logarithm problems in the class and unit
groups.

First type setrand(1): this resets the random seed (to make sure we and you get the exact
same results). Now type

bnf = bnfinit(NF);

where NF is the same number field as before. You do not want to see the output clutter a number
of screens so don’t forget the semi-colon. (Well if you insist, it is about three screenful in this case,
but may require several Megabytes for larger degrees.) Note that NF is now expressed in terms of
the variable y, to avoid later problems with variable priorities.

A word of warning: both the bnf and all results obtained from it are conditional on a Riemann
Hypothesis at this point; the bnf must be certified before the following statements become actual
theorems.

Member functions are still available for bnf structures. So, let’s try them: bnf.pol gives A,
bnf.sign, bnf.disc, bnf.zk, ok nothing really exciting. In fact, an nf is included in the bnf

structure: bnf.nf should be identical to NF. Thus, all functions which took an nf as first argument,
will equally accept a bnf (and a bnr as well which contains even more data).

Anyway, new members are available now: bnf.no tells us the class number is 4, bnf.cyc that
it is cyclic (of order 4 but that we already knew), bnf.gen that it is generated by the ideal g =

bnf.gen[1]. If you idealfactor(bnf, g), you recognize P[2]. (You may also play in the other
direction with idealhnf.) The regulator bnf.reg is equal to 3.794 bnf.tu tells us that the roots

41

of unity in K are exactly the sixth roots of 1 and gives a primitive root ζ = 1
7 (α3− 5α2− 8α+ 56),

which we have seen already. Finally bnf.fu gives us a fundamental unit ε = 1
7 (α3− 5α2−α+ 28),

which must be linked to the units u and u2 found above since the unit rank is 1. To find these
relations, type

bnfisunit(bnf, u)

bnfisunit(bnf, u2)

Lo and behold, u = ζ2ε2 and u2 = ζ4ε1.

Note. Since the fundamental unit obtained depends on the random seed, you could have obtained
another unit than ε, had you not reset the random seed before the computation. This was the
purpose of the initial setrand instruction, which was otherwise unnecessary.

We are now ready to perform operations in the class group. First and foremost, let us certify
the result: type bnfcertify(bnf). The output is 1 if all went well; in fact no other output is
possible, whether the input is correct or not, but you can get an error message (or in exceedingly
rare cases an infinite loop) if it is incorrect.

It means that we now know the class group and fundamental units unconditionally (no more
GRH then!). In this case, the certification process takes a very short time, and you might wonder
why it is not built in as a final check in the bnfinit function. The answer is that as the regulator
gets bigger this process gets increasingly difficult, and becomes soon impractical, while bnfinit still
happily spits out results. So it makes sense to dissociate the two: you can always check afterwards,
if the result is interesting enough. Looking at the tentative regulator, you know in advance whether
the certification can possibly succeed: if bnf.reg is large, don’t waste your time.

Now that we feel safe about the bnf output, let’s do some real work. For example, let us take
again our prime ideal pr above 7. Since we know that the class group is of order 4, we deduce that
pr raised to the fourth power must be principal. Type

pr4 = idealpow(nf, pr, 4)

v = bnfisprincipal(bnf, pr4)

The first component gives the factorization of the ideal in the class group. Here, [0] means that
it is up to equivalence equal to the 0-th power of the generator g given in bnf.gen, in other words
that it is a principal ideal. The second component gives us the algebraic number α such that
pr4 = αZK , α being as usual expressed on the integral basis. Type alpha = v[2]. Let us check
that the result is correct: first, type idealnorm(bnf, alpha). (Note that we can use a bnf with
all the nf functions; but not the other way round, of course.) It is indeed equal to 74 = 2401, which
is the norm of pr4. This is only a first check. The complete check is obtained by computing the
HNF of the principal ideal generated by alpha. To do this, type idealhnf(bnf, alpha) == pr4.

Since the equality is true, alpha is correct (not that there was any doubt!). But bnfisprin-

cipal also gives us information for nonprincipal ideals. For example, type

v = bnfisprincipal(bnf, pr)

The component v[1] is now equal to [3], and tells us that pr is ideal-equivalent to the cube of
the generator g. Of course we already knew this since the product of P[3] and P[4] was principal
(generated by al), as well as the product of all the P[i] (generated by 7), and we noticed that
P[2] was equal to g, which has order 4. The second component v[2] gives us α on the integral
basis such that pr = αg3. Note that if you don’t want this α, which may be large and whose
computation may take some time, you can just add the flag 1 (see the online help) to the arguments
of bnfisprincipal, so that it only returns the position of pr in the class group.

42

12.4. Class Field Theory, bnr.

We now survey quickly some class field theoretic routines. We must first initialize a Buchmann
Number Ray, or bnr, structure, attached to a bnf base field and a modulus. Let’s keep K, and try
a finite modulus f = 7ZK . (See the manual for how to include infinite places in the modulus.) Since
K will now become a base field over which we want to build relative extensions, the attached bnf

needs to have variables of lower priority than the polynomials defining the extensions. Fortunately,
we already took care that, but it would have been easy to deal with the problem now (as easy as
bnf = subst(bnf, x, y)). Then type

bnr = bnrinit(bnf, 7, 1);

bnr.cyc

tells us the ray class group modulo f is isomorphic to Z/24Z×Z/6Z×Z/2Z. The attached generators
are bnr.gen. Just as a bnf contained an nf, a bnr contains a bnf (hence an nf), namely bnr.bnf.
Here bnr.clgp refers to the ray class group, while bnr.bnf.clgp refers to the class group.

rnfkummer(bnr,, 2)

rnfkummer(bnr,, 3)

outputs defining polynomials for the 2 abelian extensions of K of degree 2 (resp. 3), whose conductor
is exactly equal to f (the modulus used to define bnr). (In the current implementation of rnfkummer,
these degrees must be prime.) What about other extensions of degree 2 for instance?

L0= subgrouplist(bnr, [2])

L = subgrouplist(bnr, [2], 1)

L0, resp. L is the list of those subgroups of the full ray class group mod 7, whose index is 2, and
whose conductor is 7, resp. arbitrary. (Subgroups are given by a matrix of generators, in terms of
bnr.gen.) L0 has 2 elements, attached to the 2 extensions we already know. L has 7 elements, the
2 from L0, and 5 new ones:

L1 = setminus(Set(L), Set(L0))

The conductors are

vector(#L1, i, bnrconductor(bnr, L1[i]))

among which one sees the identity matrix, i.e. the trivial ideal. (It is L1[3] in my session, maybe
not in yours. Take the right one!) Indeed, the class group was cyclic of order 4 and there exists a
unique unramified quadratic extension. We could find it directly by recomputing a bnr with trivial
conductor, but we can also use

rnfkummer(bnr, L1[3]) \\ pick the subgroup with trivial conductor!

directly which outputs the (unique by Takagi’s theorem) class field attached to the subgroup L1[3].
In fact, it is of the form K(

√
−ε). We can check this directly:

rnfconductor(bnf, x^2 + bnf.fu[1])

43

12.5. Galois Theory over Q.

PARI includes a nearly complete set of routines to compute with Galois extensions of Q. We
start with a very simple example. Let ζ a 8th-root of unity and K = Q(ζ). The minimal polynomial
of ζ is the 8th cyclotomic polynomial, namely polcyclo(8) (=x4 + 1).

We issue the command

G = galoisinit(x^4 + 1);

to compute G = Gal(K/Q). The command galoisisabelian(G) returns [2,0;0,2] so G is
an abelian group, isomorphic to (Z/2Z)2, generated by σ=G.gen[1] and τ=G.gen[2]. These
automorphisms are given by their actions on the roots of x4+1 in a suitable p-adic extension. To get
the explicit action on ζ, we use galoispermtopol(G,G.gen[i]) for i = 1, 2 and get σ(ζ) = −ζ and
τ(ζ) = ζ3. The last nontrivial automorphism is στ=G.gen[1]*G.gen[2] and we have στ(ζ) = −ζ3.
(At least in my version, yours may return a different set of generators, rename accordingly.)

We compute the fixed field of K by the subgroup generated by τ with

galoisfixedfield(G, G.gen[2], 1)

and get x2 + 2. Now we want the factorization of x4 + 1 over that subfield. Of course, we could use
nffactor, but here we have a much simpler option: galoisfixedfield(G, G.gen[1], 2) outputs

[x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]

which means that x4 + 1 = (x2 − αx − 1)(x2 + αx − 1) where α is a root of x2 + 2, and more
precisely, α = ζ3 + ζ. So we recover the well-known factorization:

x4 + 1 = (x2 −
√
−2x− 1)(x2 +

√
−2x− 1)

For our second example, let us take the field K defined by the polynomial

P = x^18 - 3*x^15 + 115*x^12 + 104*x^9 + 511*x^6 + 196*x^3 + 343;

G = galoisinit(P);

Since galoisinit succeeds, the extension K/Q is Galois. This time galoisisabelian(G) returns
0, so the extension is not abelian; however we can still put a name on the underlying abstract
group. Use galoisidentify(G), which returns [18, 3]. By looking at the GAP4 classification we
find that [18, 3] is S3 × Z/3Z. This time, the subgroups of G are not obvious, fortunately we can
ask PARI : galoissubgroups(G).

Let us look for a polynomial Q with the property that K is the splitting field of Q(x2). For
that purpose, let us take σ=G.gen[3]. We check that G.gen[3]^2 is the identity, so σ is of order
2. We now compute the fixed field Kσ and the relative factorization of P over Kσ:

F = galoisfixedfield(G, G.gen[3], 2);

So K is a quadratic extension of Kσ defined by the polynomial R=F[3][1]. It is well-known that
K is also defined by x2−D, where D is the discriminant of R (over Kσ). To compute D, we issue:

D = poldisc(F[3][1]) * Mod(1,subst(F[1],x,y));

Note that since y in F[3][1] denotes a root of F[1], we have to use subst(,x,y). Now we hope
that D generates Kσ and compute Q=charpoly(D). We check that Q = x9 + 270x6 + 12393×
x3 + 19683 is irreducible with polisirreducible(Q). (Were it not the case, we would multiply D
by a random square.) So D is a generator of Kσ and

√
D is a generator of K. The result is that

K is the splitting field of Q(x2). We can check that with nfisisom(P,subst(Q,x,x^2)).

44

12.6. Creating and Listing Number Fields.

Suppose you want to work with cyclic quartic fields (i.e., fields with Galois group C4 = Z/4Z
over Q): you could look in a database or in a book for examples, but PARI provides the simple but
powerful nflist command: in this case you could simply write V = nflist("C4"), which would
immediately return a list of polynomials (in the present case 18, in some random order) defining
cyclic quartic fields. Note that these polynomials are usually not the simplest, you can for instance
do V = apply(polredbest, V) to reduce them.

Using vecmax(apply(z->abs(nfdisc(z)),V)), you can check that the largest discriminant is
35152. Thus, if you only want discriminants up to 10000 you would write V = nflist("C4", [1,

10000]), which would now output only 10 number fields. Or if you want only fields with absolute
discriminant exactly equal to 8000, you would write V = nflist("C4", 8000), which would output
the two polynomials x4 ± 10x2 + 20, which define non-isomorphic number fields (using polsturm,
you can check that one is totally real, the other totally complex). Finally, if you only want C4-fields
with a given number s of complex places, you would write nflist("C4",,s) (don’t forget the two
consecutive commas, since the second argument is the discriminant range), for instance:

for(s = 0, 2, print1([s, #nflist("C4", , s)]," "))

would output [0, 10] [1, 0], [2, 10], so nflist gives you 10 totally real and 10 totally com-
plex cyclic quartic fields, but none with mixed signature (2, 1), which is a good thing since they do
not exist!

Of course you can ask for many more: for instance in a few seconds

apply(length, #nflist("C4", [1, 10^14], -2))

will return [607589, 0, 607609], which tells you that there are 607, 589 totally real and 607, 609
totally complex cyclic quartic fields with absolute discriminant up to 1014: this illustrates the
special use of the parameter s = −2, which separates the number fields by increasing number of
complex places (the default is s = −1 which ignores the signature altogether).

Of course, nflist applies to many other Galois groups than C4 (where “Galois group” is
understood as Galois group of the Galois closure, see below), but before leaving cyclic quartic
fields, let us see two more related instructions. Starting again with V = nflist("C4"), write R =

apply(nfresolvent, V): this outputs a list of 18 quadratic polynomials, which define the unique
quadratic subfield of each quartic field. In the present example, the nfsubfields command (more
precisely R = apply(z -> polredbest(nfsubfields(z, 2, 1)[1]), V)) would have given an
identical result, but the purpose of nfresolvent is different. First, for many Galois groups, it
really outputs what one usually calls the resolvent polynomial, for instance a quadratic polyno-
mial for an S3 field, a cubic for a non-Galois quartic, etc... Second, as here, the fields are often
constructed as extensions of subfields, and nfresolvent gives the subfield on which the field has
been constructed. Better, typing nfresolvent(V[1], 1) outputs [x^2 - x - 1, [[5, 2; 0,

1], [1, 1]]], which not only gives the subfield, but the relative conductor as a module (a pair
ideal, list of real places).

The second instruction is polsubcyclo, which has existed for a long time in PARI. The manual
states that polsubcyclo(n,d) gives the subfields of degree d of Q(ζn). However, if n is very large,
previous versions would take an inordinate amount of time. The present version allows us to take
n very large, but the price to pay is that the degree d of the desired subfields must be very small,
for instance d ≤ 30, and in addition must be a prime number if d ≥ 7. For instance:

? p = 10^16 + 649759; /* A prime chosen so that p = 1 mod 11*19*29*41

45

? polsubcyclo(p, 11);

time = 42 ms. /* Would have been impossible in previous versions */

? polsubcyclo(p, 19);

time = 348 ms.

? polsubcyclo(p, 29);

time = 10,304 ms. /* Still reasonable */

? polsubcyclo(p, 41);

time = 6min, 43,181 ms. /* Slow but feasible. */

The most common Galois groups corresponding to number fields of small degree have been
implemented: all solvable groups up to degree 7 (there are 13 in degree 6 for instance), the groups
C` and D` for ` prime. In addition, the simple group A5 has also been included, but by cheating
since it is obtained by table lookup (and available only of you have downloaded and installed the
nflistdata package), in particular because of its relation with modular forms of weight 1.

13. Working with Associative Algebras.

Beyond the realm of number fields, we can perform operations with more general associative
algebras, that need not even be commutative! Of course things become more complicated. We
have two different structures: the first one allows us to manipulate any associative algebra that is
finite-dimensional over a prime field (Q or Fp for some prime p), and the second one is dedicated
to central simple algebras over number fields, which are some nice algebras that behave a lot like
number fields. Like in other parts of gp, every function that has to do with associative algebras
begins with the same prefix: alg.

13.1. Arbitrary Associative Algebras.

In order to create an associative algebra, you need to tell gp how to multiply elements. We do
this by providing a multiplication table for the algebra, in the form of the matrix of left multiplication
by each basis element, and use the function algtableinit.

For instance, let us work in F3[x]/(x2). Of course, we could use polmods of intmods to represent
elements in this algebra, but let’s introduce the general mechanism with this simple example! This
algebra has a basis with two elements: 1 and ε, the image of x in the quotient. By the way, gp
will only accept your multiplication table if the first basis vector is 1. The multiplication matrix
of 1 is the 2× 2 identity matrix, and since ε · 1 = ε and ε · ε = 0, the left multiplication table of ε

is

(
0 0
1 0

)
. So we use the following multiplication table:

mt1 = [matid(2), [0,0;1,0]]

Since we want our algebra to be over F3, we have to specify the characteristic and create the algebra
with

al1 = algtableinit(mt1, 3);

Let’s create another one: the algebra of upper-triangular 2× 2 matrices over Q. This algebra has

dimension 3, with basis 1, a =

(
0 1
0 0

)
and b =

(
0 0
0 1

)
, and these elements satisfy a2 = 0, ab = a,

ba = 0 and b2 = b. Watch out, even though a and b are 2 × 2 matrices, their left multiplication
tables are 3× 3 matrices! The left multiplication tables of a and b are respectively

46

ma = [0,0,0; 1,0,1; 0,0,0];

mb = [0,0,0; 0,0,0; 1,0,1];

The multiplication table of our second algebra is therefore

mt2 = [matid(3), ma, mb];

and we can create the algebra with

al2 = algtableinit(mt2,0);

In fact, we can omit the second argument and type

al2 = algtableinit(mt2);

and the characteristic of the algebra will implicitly be 0. Warning: in characteristic 0, algtableinit
expects an integral multiplication table.

In fact, gp does not check that the multiplication table you provided really defines an associative
algebra. You can check it a posteriori with

algisassociative(al2)

or before creating the algebra with

algisassociative(mt1,3)

After creating the algebra, you can get back the multiplication table that you provided with alg-

multable(al2), the characteristic with algchar(al1) and the dimension with algdim(al2).

13.1.1. Elements.

In an associative algebra, we represent elements as column vectors expressing them on the
basis of the algebra. For instance, in al1 = F3[ε], the element 1 − ε is represented as [1,-1]~.

Similarly, in al2 we can define a, b and c =

(
2 1
0 1

)
by

a = [0,1,0]~
b = [0,0,1]~
c = [2,1,-1]~

We can also draw random elements in a box using

algrandom(al2, 10)

You can compute any elementary operation: try various combinations of algadd, algsub, algneg,
algmul, alginv, algsqr, algpow, using the syntax

algmul(al2, b, a)

algpow(al2, c, 10)

and the natural variants. In every algebra we have the left regular representation, which sends
every element x to the matrix of left multiplication by x. In gp we access it by calling

algtomatrix(al2, c)

For every element x in an associative algebra, the trace of that matrix is called the trace of x, the
determinant is called the norm of x, and the characteristic polynomial is called the characteristic
polynomial of x. We can compute them:

algtrace(al2, a)

algnorm(al2, c)

algcharpoly(al2, b)

47

13.1.2. Properties.

Now let’s try to compute some interesting properties of our algebras. Maybe the simplest one
we want to test is whether an algebra is commutative; algiscommutative does that for us: you can
use it to check that al1 is of course commutative, but al2 is not since for instance ab = a 6= 0 = ba.
More precisely, we can compute a basis of the center of an algebra with algcenter. Since al1 is
commutative, we obtain the identity matrix, and

algcenter(al2)

tells us that the center of al2 is one-dimensional and generated by the identity.

An important object in the structure of associative algebras is the Jacobson radical : the set of
elements that annihilate every simple left module. It is a nilpotent two-sided ideal. An algebra is
semisimple if its Jacobson radical is zero, and for every algebra A with radical J , the quotient A/J
is semisimple. You can compute a basis for the Jacobson radical using algradical. For instance,
the radical of al1 is generated by the element ε. Indeed, in a commutative algebra the Jacobson
radical is equal to the set of nilpotent elements. The radical of al2 has basis a: it is the subspace of
strictly upper-triangular 2×2 matrices. You can also directly test whether an algebra is semisimple
using algissemisimple. Let’s compute the semisimplification of our second algebra by quotienting
out its radical:

al3 = algquotient(al2, algradical(al2));

Check that al3 is indeed semisimple now that you know how to do it!

Group algebras provide interesting examples: when G is a finite group and F is a field, the
group algebra F [G] is semisimple if and only if the characteristic of F does not divide the order
of G. Let’s try it!

K = nfsplitting(x^3-x+1); \\ Galois closure -> S_3

G = galoisinit(K)

al4 = alggroup(G, 5) \\ F_5[S_3]

algissemisimple(al4)

Check what happens when you change the characteristic of the algebra.

The building blocks of semisimple algebras are simple algebras: algebras with no nontrivial
two-sided ideals. Since the Jacobson radical is a two-sided ideal, every simple algebra is semisimple.
You can check whether an algebra is simple using algissimple. For instance, you can check that

algissimple(al1)

returns 0, but this is not very interesting since al1 is not even semisimple. Instead we can test
whether al3 is simple, and since we already know that it is semisimple we can prevent gp from
checking it again by using the optional second argument:

algissimple(al3, 1)

We see that al3 is not simple, and this implies that we can decompose it further. Indeed, every
semisimple algebra is isomorphic to a product of simple algebras. We can obtain this decomposition
with

dec3 = algsimpledec(al3)[2];

apply(algdim, dec3)

We see that al3 is isomorphic to Q×Q. Similarly, we can decompose al4.

48

dec4 = algsimpledec(al4)[2];

apply(algdim, dec4)

We see that al4 is isomorphic to F5×F5×A where A is a mysterious 4-dimensional simple algebra.
However every simple algebra over a finite field is isomorphic to a matrix algebra over a possibly
larger finite field. By computing the center

algcenter(dec4[3])

we see that this algebra has center F5, so that al4 is isomorphic to F5 × F5 ×M2(F5).

13.2. Central Simple Algebras over Number Fields.

As we saw, simple algebras are building blocks for more complicated algebras. The center of a
simple algebra is always a field, and we say that an algebra over a field F is central if its center is F .
The most natural noncommutative generalization of a number field is a division algebra over Q:
an algebra in which every nonzero element is invertible. Since the center of a division algebra
over Q is a number field, we do not lose any generality by considering central division algebras over
number fields. However, the tensor product of two central division algebras is not always a division
algebra, but division algebras are always simple and central simple algebras are closed under tensor
products, giving a much nicer global picture. This is why we choose central simple algebras over
number fields as our noncommutative generalization of number fields.

13.2.1. Creation.

Let’s create our first central simple algebras! A well-known construction is that of quaternion
algebras, which proceeds as follows. Let F be a number field, and let a, b ∈ F×; the quaternion
algebra (a, b)F is the F -algebra generated by two elements i and j satisfying i2 = a, j2 = b
and ij = −ji. Hamilton’s quaternions correspond to the choice a = b = −1, but it is not the only
possible one! Here is our first quaternion algebra:

Q = nfinit(y);

al1 = alginit(Q,[-2,-1]); \\ (-2,-1)_Q

Note that we represented the rationals Q with an nf structure and used the variable y in that
structure. The reason for this variable choice will be clearer after looking at the next construction.
You can see from the definition of a quaternion algebra that it has dimension 4 over its center, a
fact that you can check in our example:

algdim(al1)

Cyclic algebras generalize the quaternion algebra construction. Let F be a number field and K/F
a cyclic extension of degree d with σ ∈ Gal(K/F) an automorphism of order d, and let b ∈ F×; the

cyclic algebra (K/F, σ, b) is the algebra
⊕d−1

i=0 u
iK with ud = b and ku = uσ(k) for all k ∈ K. It

is a central simple algebra of dimension d2 over F . Let’s construct one. First, start with a cyclic
extension of number fields. A simple way of obtaining such an extension is to take a cyclotomic
field over Q.

T = polcyclo(5)

K = rnfinit(Q,T);

aut = Mod(x^2,T)

Here the variable of T must have higher priority than that of Q to build the rnf structure. Now
choose an element b ∈ Q×, say 3.

b = 3

49

Now we can create the algebra and check that it has the right dimension: 16.

al2 = alginit(K, [aut,b]);

algdim(al2)

We can recover the field K, the automorphism aut and the element b respectively as follows.

algsplittingfield(al2)

algaut(al2)

algb(al2)

In order to see how we recover quaternion algebras with this construction, let’s look at

algsplittingfield(al1).pol

algaut(al1)

algb(al1)

We see that the quaternion algebra (−2,−1)Q constructed by gp is represented as a cyclic alge-
bra (Q(

√
−2)/Q, σ,−1) by writing Q + Qi+ Qj + Qij = Q(i) + jQ(i).

A nice feature of central simple algebras over a given number field is that they are completely
classified up to isomorphism, in terms of certain invariants. We therefore provide functions to create
an algebra directly from its invariants. The first basic invariant is the dimension of the algebra
over its center. In fact, the dimension of a central simple algebra is always a square, and we call
the square root of the dimension the degree of the algebra. For instance, a quaternion algebra has
degree 2. We can access the degree with

algdegree(al1)

algdegree(al2)

Let F be a number field and A a central simple algebra of degree d over F . To every place v of F
we can attach a Hasse invariant hv(A) ∈ (1

dZ)/Z ⊂ Q/Z, with the additional restrictions that the
invariant is 0 at every complex place and in (1

2Z)/Z at every real place. These invariants are 0 at
all but finitely many places. For instance we can compute the invariants for our algebras:

alghassei(al1)

alghassef(al1)

alghassei(al2)

alghassef(al2)

The output of alghassei (infinite places) is a vector of integers of length the number of real places
of F , and the corresponding Hasse invariants are these integers divided by d. Here we learn that
the invariant of al1 at ∞ is 1/2 and that of al2 is 0. Similarly, the output of alghassef (finite
places) is a pair of vectors, one containing primes of the base field, and a vector of integers of the
same length representing the Hasse invariants at finite places. We learn that al1 has invariant 1/2
at 2 and 0 at every other finite place, and that al2 has invariant −1/3 at 3, invariant 1/3 at 5,
and 0 at every other finite place. These invariants give a complete classification of central simple
algebras over F :

• two central simple algebras over F of the same degree are isomorphic if and only if they have
the same invariants;

• the sum of the Hasse invariants is 0 in Q/Z;

• for every degree d and finite collection of Hasse invariants satisfying the conditions above,
there exists a central simple algebra over F having those invariants.

50

Let’s use gp to construct an algebra from its invariants. First let’s construct a number field
and a few places.

nf = nfinit(y^2-2);

p3 = idealprimedec(nf,3)[1]

p17 = idealprimedec(nf,17)[1]

Now let’s construct an algebra of degree 6. The following Hasse invariants satisfy the correct
conditions since 1/3 + 1/6 + 1/2 = 0 in Q/Z:

hf = [[p3,p17],[1/3,1/6]]; hi = [1/2,0]; \\ nf has 2 real places

Finally we can create the algebra:

al3 = alginit(nf,[6,hf,hi]);

This will require less than half a minute but a lot of memory: this is an algebra of dimension 2×62 =
72 over Q and we are doing a nontrivial computation in the initialization! You can check that the
dimension over Q is what we expect:

algdim(al3,1)

During the initialization, gp computes an integral multiplication table for the algebra. This allows
us to recreate a table version of the algebra:

mt3 = algmultable(al3);

al4 = algtableinit(mt3);

We can then check that the algebra is simple as expected:

algissimple(al4)

Finally, an important test for a central simple algebra is whether it is a division algebra.

algisdivision(al3)

13.2.2. Elements.

In a cyclic algebra (K/F, σ, b) of degree d, we represent elements as column vectors of length d,

expressed on the basis of the K-vector space
⊕d−1

i=0 u
iK:

a = [x^3-1, -x^2, 3, -1]~*Mod(1,T) \\represents an element in al2

To represent elements in the quaternion algebra al1, we must view it as a cyclic algebra, and
therefore use the representation al1 = Q(i) + jQ(i). The standard basis elements 1, i, j, k = ij =
−ji become

one = [1,0]~
i = [x,0]~
j = [0,1]~
k = [0,-x]~

The expected equalities hold:

algsqr(al1,i) == -2*one

algsqr(al1,j) == -1*one

algsqr(al1,k) == -2*one

algmul(al1,i,j) == k

algmul(al1,j,i) == -k

51

Like nfinit for number fields, the alginit function computes an integral basis of the algebra
being initialized. More precisely, an order in a Q-algebra A is a subring O ⊂ A that is finitely
generated as a Z-module and such that QO = A. In an algebra structure computed with alginit,
we store a basis of an order O0, which we will call the integral basis of the algebra. There is
no canonical choice for such a basis, and not every integral element has integral coordinates with
respect to that basis (the set of integral elements in A does not form a ring in general). By default,
O0 is a maximal order and hence behaves in a way similar to the ring of integers in a number field.
You can disable the (costly) computation of a maximal order with an optional argument:

al5 = alginit(nf,[6,hf,hi],,0);

This command should be faster than the initialization of al3. As in number fields, you can represent
elements of central simple algebras in algebraic form, which means the cyclic algebra representation
we described above, or in basis form, which means as a Q-linear combination of the integral basis.
You can switch between the two representations:

algalgtobasis(al2, a)

algalgtobasis(al1, j)

algbasistoalg(al3, algrandom(al3,1))

As usual you can compute any elementary operation: try various combinations of algadd, algsub,
algneg, algmul, alginv, algsqr, algpow.

Every central simple algebra A over a number field F admits a splitting field , i.e. an exten-
sion K/F such that A⊗F K ∼= Md(K). We always store such a splitting in an alginit structure,
and you can access it using

algsplittingfield(al1) \\ K as an rnf structure

algtomatrix(al1, k) \\ image of k by the splitting isomorphism

For every x ∈ A, the trace (resp. determinant, characteristic polynomial) of that matrix is in K
(resp. K, K[X]) and is called the reduced trace (resp. reduced norm, reduced characteristic polyno-
mial) of x. You can compute them using

algtrace(al3, vector(72,i,i==3)~)

algnorm(al2, a)

algcharpoly(al1, -1+i+j+2*k)

14. Plotting.

PARI supports high and low-level graphing functions, on a variety of output devices: a spe-
cial purpose window under standard graphical environments (the X Windows system, Mac OS X,
Microsoft Windows), or a PostScript file ready for the printer. These functions use a multitude
of flags, which are mostly power-of-2. To simplify understanding we first give these flags symbolic
names.

/* Relative positioning of graphic objects: */

nw = 0; se = 4; relative = 1;

sw = 2; ne = 6;

/* String positioning: */

/* V */ bottom = 0; /* H */ left = 0; /* Fine tuning */ hgap = 16;

vcenter = 4; center = 1; vgap = 32;

52

top = 8; right = 2;

We also decrease drastically the default precision.

\p 9

This is very important, since plotting involves calculation of functions at a huge number of points,
and a relative precision of 38 significant digits is an obvious overkill: the output device resolution
certainly won’t reach 1038 × 1038 pixels!

Start with a simple plot:

ploth(X = -2, 2, sin(X^7))

You can see the limitations of the “straightforward” mode of plotting: while the first several cycles
of sin reach −1 and 1, the cycles which are closer to the left and right border do not. This
is understandable, since PARI is calculating sin(X7) at many (evenly spaced) points, but these
points have no direct relationship to the “interesting” points on the graph of this function. No
value close enough to the maxima and minima are calculated, which leads to wrong turning points
in the graph. To fix this, one may use variable steps which are smaller where the function varies
rapidly:

ploth(X = -2, 2, sin(X^7), "Recursive")

The precision near the edges of the graph is much better now. However, the recursive plotting
(named so since PARI subdivides intervals until the graph becomes almost straight) has its own
pitfalls. Try

ploth(X = -2, 2, sin(X*7), "Recursive")

The graph looks correct far away, but it has a straight interval near the origin, and some sharp
corners as well. This happens because the graph is symmetric with respect to the origin, thus the
middle 3 points calculated during the initial subdivision of [−2, 2] are exactly on the same line. To
PARI this indicates that no further subdivision is needed, and it plots the graph on this subinterval
as a straight line.

There are many ways to circumvent this. Say, one can make the right limit 2.1. Or one can
ask PARI for an initial subdivision into 16 points instead of default 15:

ploth(X = -2, 2, sin(X*7), "Recursive", 16)

All these arrangements break the symmetry of the initial subdivision, thus make the problem go
away. Eventually PARI will be able to better detect such pathological cases, but currently some
manual intervention may be required.

The function ploth has some additional enhancements which allow graphing in situations when
the calculation of the function takes a lot of time. Let us plot ζ(1

2 + it):

ploth(t = 100, 110, real(zeta(0.5+I*t)), /*empty*/, 1000)

This can take quite some time. (1000 is close to the default for many plotting devices, we want
to specify it explicitly so that the result does not depend on the output device.) Try the recursive
plot:

ploth(t = 100, 110, real(zeta(0.5+I*t)), "Recursive")

It takes approximately the same time. Now try specifying fewer points, but make PARI approximate
the data by a smooth curve:

53

ploth(t = 100, 110, real(zeta(0.5+I*t)), "Splines", 100)

This takes much less time, and the output is practically the same. How to compare these two
outputs? We will see it shortly. Right now let us plot both real and complex parts of ζ on the
same graph:

f(t) = my(z = zeta(0.5+I*t)); [real(z),imag(z)];

ploth(t = 100, 110, f(t), , 1000)

(Note the use of the temporary variable z; my declares it local to the function’s body.)

Note how one half of the roots of the real and imaginary parts coincide. Why did we define a
function f(t)? To avoid calculation of ζ(1

2 + it) twice for the same value of t. Similarly, we can
plot parametric graphs:

ploth(t = 100, 110, f(t), "Parametric", 1000)

In that case (parametric plot of the real and imaginary parts of a complex function), we can also
use directly

ploth(t = 100, 110, zeta(0.5+I*t), "Complex", 1000)

ploth(t = 100, 110, zeta(0.5+I*t), "Complex|Splines", 100)

If your plotting device supports it, you may ask PARI to show the points in which it calculated
your function:

ploth(t = 100, 110, f(t), "Parametric|Splines|Points_too", 100)

As you can see, the points are very dense on the graph. To see some crude graph, one can even
decrease the number of points to 30. However, if you decrease the number of points to 20, you can
see that the approximation to the graph now misses zero. Using splines, one can create reasonable
graphs for larger values of t, say with

ploth(t = 10000, 10004, f(t), "Parametric|Splines|Points_too", 50)

How can we compare two graphs of the same function plotted by different methods? Docu-
mentation shows that ploth does not provide any direct method to do so. However, it is possible,
and even not very complicated.

The solution comes from the other direction. PARI has a power mix of high level plotting
function with low level plotting functions, and these functions can be combined together to obtain
many different effects. Return back to the graph of sin(X7). Suppose we want to create an
additional rectangular frame around our graph. No problem!

First, all low-level graphing work takes place in some virtual drawing boards (numbered from
0 to 15), called “rectangles” (or “rectwindows”). So we create an empty “rectangle” and name it
rectangle 2 (any number between 0 and 15 would do):

plotinit(2)

plotscale(2, 0,1, 0,1)

This creates a rectwindow whose size exactly fits the size of the output device, and makes the
coordinate system inside it go from 0 to 1 (for both x and y). Create a rectangular frame along
the boundary of this rectangle:

plotmove(2, 0,0)

plotbox(2, 1,1)

54

Suppose we want to draw the graph inside a subrectangle of this with upper and left margins
of 0.10 (so 10% of the full rectwindow width), and lower and top margins of 0.02, just to make it
more interesting. That makes it an 0.88 × 0.88 subrectangle; so we create another rectangle (call
it 3) of linear size 0.88 of the size of the initial rectangle and graph the function in there:

plotinit(3, 0.88, 0.88, relative)

plotrecth(3, X = -2, 2, sin(X^7), "Recursive")

(nothing is output yet, these commands only fills the virtual drawing boards with PARI graphic
objects). Finally, output rectangles 2 and 3 on the same plot, with the required offsets (counted
from upper-left corner):

plotdraw([2, 0,0, 3, 0.1,0.02], relative)

The output misses something comparing to the output of ploth: there are no coordinates of the
corners of the internal rectangle. If your output device supports mouse operations (only gnuplot

does), you can find coordinates of particular points of the graph, but it is nice to have something
printed on a hard copy too.

However, it is easy to put x- and y-limits on the graph. In the coordinate system of the
rectangle 2 the corners are (0.1, 0.1), (0.1, 0.98), (0.98, 0.1), (0.98, 0.98). We can mark lower x-limit
by doing

plotmove(2, 0.1,0.1)

plotstring(2, "-2.000", left+top+vgap)

Computing the minimal and maximal y-coordinates might be trickier, since in principle we do not
know the range in advance (though for sin(X7) it is easy to guess!). Fortunately, plotrecth returns
the x- and y-limits.

Here is the complete program:

plotinit(3, 0.88, 0.88, relative)

lims = plotrecth(3, X = -2, 2, sin(X^7), "Recursive")

\p 3 \\ 3 significant digits for the bounding box are enough
plotinit(2); plotscale(2, 0,1, 0,1)

plotmove(2, 0,0); plotbox(2, 1,1)

plotmove(2, 0.1,0.1);

plotstring(2, lims[1], left+top+vgap)

plotstring(2, lims[3], bottom+vgap+right+hgap)

plotmove(2, 0.98,0.1); plotstring(2, lims[2], right+top+vgap)

plotmove(2, 0.1,0.98); plotstring(2, lims[4], right+hgap+top)

plotdraw([2, 0,0, 3, 0.1,0.02], relative)

We started with a trivial requirement: have an additional frame around the graph, and it took
some effort to do so. But at least it was possible, and PARI did the hardest part: creating the
actual graph. Now do a different thing: plot together the “exact” graph of ζ(1/2 + it) together
with one obtained from splines approximation. We can emit these graphs into two rectangles, say
0 and 1, then put these two rectangles together on one plot. Or we can emit these graphs into one
rectangle 0.

However, a problem arises: note how we introduced a coordinate system in rectangle 2 of the
above example, but we did not introduce a coordinate system in rectangle 3. Plotting a graph
into rectangle 3 automatically created a coordinate system inside this rectangle (you could see

55

this coordinate system in action if your output device supports mouse operations). If we use two
different methods of graphing, the bounding boxes of the graphs will not be exactly the same, thus
outputting the rectangles may be tricky. Thus during the second plotting we ask plotrecth to use
the coordinate system of the first plotting. Let us add another plotting with fewer points too:

plotinit(0, 0.9,0.9, relative)

plotrecth(0, t=100,110, f(t), "Parametric",300)

plotrecth(0, t=100,110, f(t), "Parametric|Splines|Points_too|no_Rescale",30);

plotrecth(0, t=100,110, f(t), "Parametric|Splines|Points_too|no_Rescale",20);

plotdraw([0, 0.05,0.05], relative)

This achieves what we wanted: we may compare different ways to plot a graph, but the picture
is confusing: which graph is what, and why there are multiple boxes around the graph? At least
with some output devices one can control how the output curves look like, so we can use this to
distinguish different graphs. And the mystery of multiple boxes is also not that hard to solve: they
are bounding boxes for calculated points on each graph. We can disable output of bounding boxes
with appropriate options for plotrect. With these frills the script becomes:

plotinit(0, 0.9,0.9, relative)

plotrecth(0, t=100,110, f(t), "Parametric|no_Lines", 300)

opts="Parametric|Splines|Points_too|no_Rescale|no_Frame|no_X_axis|no_Y_axis";

plotrecth(0, t=100,110,f(t), opts, 30);

plotdraw([0, 0.05,0.05], relative)

Plotting axes on the second graph would not hurt, but is not needed either, so we omit them.
One can see that the discrepancies between the exact graph and one based on 30 points exist, but
are pretty small. On the other hand, decreasing the number of points to 20 would make quite a
noticeable difference.

Additionally, one can ask PARI to convert a plot to PS (PostScript) or SVG (Scalable Vector
Graphics) format: just use the command plotexport instead of plotdraw in the above examples
(or plothexport instead of ploth). This returns a character string which you can then write to a
file using write.

Now suppose we want to join many different small graphs into one picture. We cannot use
one rectangle for all the output as we did in the example with ζ(1/2 + it), since the graphs should
go into different places. Rectangles are a scarce commodity in PARI, since only 16 of them are
user-accessible. Does it mean that we cannot have more than 16 graphs on one picture? Thanks
to an additional operation of PARI plotting engine, there is no such restrictions. This operation is
plotcopy.

The following script puts 4 different graphs on one plot using 2 rectangles only, A and T:

A = 2; \\ accumulator
T = 3; \\ temporary target
plotinit(A); plotscale(A, 0, 1, 0, 1)

plotinit(T, 0.42, 0.42, relative);

plotrecth(T, x= -5, 5, sin(x), "Recursive")

plotcopy(T, 2, 0.05, 0.05, relative + nw)

plotmove(A, 0.05 + 0.42/2, 1 - 0.05/2)

plotstring(A,"Graph", center + vcenter)

plotinit(T, 0.42, 0.42, relative);

56

plotrecth(T, x= -5, 5, [sin(x),cos(2*x)], 0)

plotcopy(T, 2, 0.05, 0.05, relative + ne)

plotmove(A, 1 - 0.05 - 0.42/2, 1 - 0.05/2)

plotstring(A,"Multigraph", center + vcenter)

plotinit(T, 0.42, 0.42, relative);

plotrecth(T, x= -5, 5, [sin(3*x), cos(2*x)], "Parametric")

plotcopy(T, 2, 0.05, 0.05, relative + sw)

plotmove(A, 0.05 + 0.42/2, 0.5)

plotstring(A,"Parametric", center + vcenter)

plotinit(T, 0.42, 0.42, relative);

plotrecth(T, x= -5, 5, [sin(x), cos(x), sin(3*x),cos(2*x)], "Parametric")

plotcopy(T, 2, 0.05, 0.05, relative + se)

plotmove(A, 1 - 0.05 - 0.42/2, 0.5)

plotstring(A,"Multiparametric", center + vcenter)

plotmove(A, 0, 0)

plotbox(A, 1, 1)

plotdraw(A)

\\ s = plotexport(A, relative); write("foo.ps", s) \\ if hard copy needed

The rectangle A plays the role of accumulator, rectangle T is used as a target to plotrecth

only. Immediately after plotting into rectangle T the contents is copied to accumulator. Let us
explain numbers which appear in this example: we want to create 4 internal rectangles with a gap
0.06 between them, and the outside gap 0.05 (of the size of the plot). This leads to the size 0.42 for
each rectangle. We also put captions above each graph, centered in the middle of each gap. There
is no need to have a special rectangle for captions: they go into the accumulator too.

To simplify positioning of the rectangles, the above example uses relative “geographic” nota-
tion: the last argument of plotcopy specifies the corner of the graph (say, northwest) one counts
offset from. (Positive offsets go into the rectangle.)

To demonstrate yet another useful plotting function, design a program to plot Taylor poly-
nomials for a sinx about 0. For simplicity, make the program good for any function, but assume
that a function is odd, so only odd-numbered Taylor series about 0 should be plotted. Start with
defining some useful shortcuts

xlim = 13; ordlim = 25; f(x) = sin(x);

default(seriesprecision,ordlim)

farray(t) = vector((ordlim+1)/2, k, truncate(f(1.*t + O(t^(2*k+1)))));

FARRAY = farray(’t); \\’t to make sure t is a free variable

farray(x) returns a vector of Taylor polynomials for f(x), which we store in FARRAY. We want
to plot f(x) into a rectangle, then make the rectangle which is 1.2 times higher, and plot Taylor
polynomials into the larger rectangle. Assume that the larger rectangle takes 0.9 of the final plot.

First of all, we need to measure the height of the smaller rectangle:

plotinit(3, 0.9, 0.9/1.2, 1);

opts = "Recursive | no_X_axis|no_Y_axis|no_Frame";

lims = plotrecth(3, x= -xlim, xlim, f(x), opts,16);

h = lims[4] - lims[3];

57

Next step is to create a larger rectangle, and plot the Taylor polynomials into the larger rectangle:

plotinit(4, 0.9,0.9, relative);

plotscale(4, lims[1], lims[2], lims[3] - h/10, lims[4] + h/10)

plotrecth(4, x = -xlim, xlim, subst(FARRAY,t,x), "no_Rescale");

Here comes the central command of this example:

plotclip(4)

What does it do? The command plotrecth(. . . , "no Rescale") scales the graphs according
to coordinate system in the rectangle, but it does not pay any other attention to the size of
the rectangle. Since xlim is 13, the Taylor polynomials take very large values in the interval -
xlim...xlim. In particular, significant part of the graphs is going to be outside of the rectangle.
plotclip removes the parts of the plottings which fall off the rectangle boundary

plotinit(2)

plotscale(2, 0.0, 1.0, 0.0, 1.0)

plotmove(2,0.5,0.975)

plotstring(2,"Multiple Taylor Approximations",center+vcenter)

plotdraw([2, 0, 0, 3, 0.05, 0.05 + 0.9/12, 4, 0.05, 0.05], relative)

These commands draw a caption, and combine 3 rectangles (one with the caption, one with the
graph of the function, and one with graph of Taylor polynomials) together. The plots are not very
beautiful with the default colors. See examples/taylor.gp for a user function encapsulating the
above example, and a colormap generator.

This finishes our survey of PARI plotting functions, but let us add some remarks. First of
all, for a typical output device the picture is composed of small colored squares (pixels), as a very
large checkerboard. Each output rectangle is a disjoint union of such squares. Each drop of paint
in the rectangle will color a whole square in it. Since the rectangle has a coordinate system, it is
important to know how this coordinate system is positioned with respect to the boundaries of these
squares.

The command plotscale describes a range of x and y in the rectangle. The limit values of x
and y in the coordinate system are coordinates of the centers of corner squares. In particular, if
ranges of x and y are [0, 1], then the segment which connects (0,0) with (0,1) goes along the middle
of the left column of the rectangle. In particular, if we made tiny errors in calculation of endpoints
of this segment, this will not change which squares the segment intersects, thus the resulting picture
will be the same. (It is important to know such details since many calculations are approximate.)

Another consideration is that all examples we did in this section were using relative sizes
and positions for the rectangles. This is nice, since different output devices will have very similar
pictures, while we did not need to care about particular resolution of the output device. On the
other hand, using relative positions does not guarantee that the pictures will be similar. Why?
Even if two output devices have the same resolution, the picture may be different. The devices
may use fonts of different size, or may have a different “unit of length”.

The information about the device in PARI is encoded in 6 numbers: resolution, size of a
character cell of the font, and unit of length, all separately for horizontal and vertical direction.
These sizes are expressed as numbers of pixels. To inspect these numbers one may use the function
plothsizes. The “units of length” are currently used to calculate right and top gaps near graph
rectangle of ploth, and gaps for plotstring. Left and bottom gaps near graph rectangle are

58

calculate using both units of length, and sizes of character boxes (so that there is enough place to
print limits of the graphs).

What does it show? Using relative sizes during plotting produces approximately the same
plotting on different devices, but does not ensure that the plottings “look the same”. Moreover,
“looking the same” is not a desirable target, “looking tuned for the environment” will be much
better. If you want to produce such fine-tuned plottings, you need to abandon a relative-size
model, and do your plottings in pixel units. To do this one removes flag relative from the above
examples, which will make size and offset arguments interpreted this way. After querying sizes with
plothsizes one can fine-tune sizes and locations of subrectangles to the details of an arbitrary
plotting device.

The last two elements of the array returned by plothsizes are the dimensions of the display,
if applicable. If there is no real display, like in svg or postscript plots, the width and height of
display are set to 0.

To check how good your fine-tuning is, you may test your graphs with a medium-resolution
plotting (as many display output devices are), and with a low-resolution plotting (say, with plot-

term("dumb") of gnuplot).

15. GP Programming.

Do we really need such a section after all we have learnt so far? We now know how to write
scripts and feed them to gp, in particular how to define functions. It’s possible to define member
function as well, but we trust you to find them in the manual. We have seen most control statements:
the missing ones (while, break, next, return and various for loops) should be straightforward.
(You won’t forget to look them up in the manual, will you?)

Output is done via variants of the familiar print (to screen), write (to a file). Input via read

(from file), input (querying user), or extern (from an external auxiliary program).

To customize gp, e.g. increase the default stack space or load your private script libraries on
startup, look up The preferences file section in the User’s manual. We strongly advise to set
parisizemax to a large nonzero value, about what you believe your machine can stand: this both
limits the amount of memory PARI will use for its computation (thereby keeping your machine
usable), and let PARI increases its stack size (up to this limit) to accommodate large computations.
If you regularly see PARI stack overflows messages, think about this one!

For clarity, it is advisable to declare local variables in user functions (and in fact, with the
smallest possible scope), as we have done so far with the keyword my. As usual, one is usually
better off avoiding global variables altogether.

Break loops are more powerful than we saw: look up dbg down / dbg up (to get a chance to
inspect local variables in various scopes) and dbg err (to access all components of an error context).

To reach grandwizard status, you may need to understand the all powerful install function,
which imports into gp an (almost) arbitrary function from the PARI library (and elsewhere too!),
or how to use the gp2c compiler and its extended types. But both are beyond the scope of the
present document.

Have fun!

59

