Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - dirichlet.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.16.1 lcov report (development 28923-fbb3cf3f02) Lines: 435 454 95.8 %
Date: 2023-12-11 07:56:23 Functions: 28 28 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2015  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : /********************************************************************/
      16             : /**                                                                **/
      17             : /**           Dirichlet series through Euler product               **/
      18             : /**                                                                **/
      19             : /********************************************************************/
      20             : #include "pari.h"
      21             : #include "paripriv.h"
      22             : 
      23             : static void
      24          28 : err_direuler(GEN x)
      25          28 : { pari_err_DOMAIN("direuler","constant term","!=", gen_1,x); }
      26             : 
      27             : /* s = t_POL (tolerate t_SER of valuation 0) of constant term = 1
      28             :  * d = minimal such that p^d > X
      29             :  * V indexed by 1..X will contain the a_n
      30             :  * v[1..n] contains the indices nj such that V[nj] != 0 */
      31             : static long
      32       28518 : dirmuleuler_small(GEN V, GEN v, long n, ulong p, GEN s, long d)
      33             : {
      34       28518 :   long i, j, m = n, D = minss(d+2, lg(s));
      35       28518 :   ulong q = 1, X = lg(V)-1;
      36             : 
      37       94164 :   for (i = 3, q = p; i < D; i++, q *= p) /* q*p does not overflow */
      38             :   {
      39       65646 :     GEN aq = gel(s,i);
      40       65646 :     if (gequal0(aq)) continue;
      41             :     /* j = 1 */
      42       53424 :     gel(V,q) = aq;
      43       53424 :     v[++n] = q;
      44     3266956 :     for (j = 2; j <= m; j++)
      45             :     {
      46     3213532 :       ulong nj = umuluu_le(uel(v,j), q, X);
      47     3213532 :       if (!nj) continue;
      48      191870 :       gel(V,nj) = gmul(aq, gel(V,v[j]));
      49      191870 :       v[++n] = nj;
      50             :     }
      51             :   }
      52       28518 :   return n;
      53             : }
      54             : 
      55             : /* ap != 0 for efficiency, p > sqrt(X) */
      56             : static void
      57      308658 : dirmuleuler_large(GEN V, ulong p, GEN ap)
      58             : {
      59      308658 :   long j, jp, X = lg(V)-1;
      60      308658 :   gel(V,p) = ap;
      61     1506344 :   for (j = 2, jp = 2*p; jp <= X; j++, jp += p) gel(V,jp) = gmul(ap, gel(V,j));
      62      308658 : }
      63             : 
      64             : static ulong
      65       10171 : direulertou(GEN a, GEN fl(GEN))
      66             : {
      67       10171 :   if (typ(a) != t_INT)
      68             :   {
      69          49 :     a = fl(a);
      70          28 :     if (typ(a) != t_INT) pari_err_TYPE("direuler", a);
      71             :   }
      72       10150 :   return signe(a)<=0 ? 0: itou(a);
      73             : }
      74             : 
      75             : static GEN
      76        3724 : direuler_Sbad(GEN V, GEN v, GEN Sbad, ulong *n)
      77             : {
      78        3724 :   long i, l = lg(Sbad);
      79        3724 :   ulong X = lg(V)-1;
      80        3724 :   GEN pbad = gen_1;
      81        9646 :   for (i = 1; i < l; i++)
      82             :   {
      83        5957 :     GEN ai = gel(Sbad,i);
      84             :     ulong q;
      85        5957 :     if (typ(ai) != t_VEC || lg(ai) != 3)
      86          14 :       pari_err_TYPE("direuler [bad primes]",ai);
      87        5943 :     q = gtou(gel(ai,1));
      88        5936 :     if (q <= X)
      89             :     {
      90        4809 :       long d = ulogint(X, q) + 1;
      91        4809 :       GEN s = direuler_factor(gel(ai,2), d);
      92        4795 :       *n = dirmuleuler_small(V, v, *n, q, s, d);
      93        4795 :       pbad = muliu(pbad, q);
      94             :     }
      95             :   }
      96        3689 :   return pbad;
      97             : }
      98             : 
      99             : GEN
     100         623 : direuler_bad(void *E, GEN (*eval)(void *,GEN,long), GEN a,GEN b,GEN c, GEN Sbad)
     101             : {
     102             :   ulong au, bu, X, sqrtX, n, p;
     103         623 :   pari_sp av0 = avma;
     104             :   GEN gp, v, V;
     105             :   forprime_t T;
     106         623 :   au = direulertou(a, gceil);
     107         616 :   bu = direulertou(b, gfloor);
     108         609 :   X = c ? direulertou(c, gfloor): bu;
     109         602 :   if (X == 0) return cgetg(1,t_VEC);
     110         595 :   if (bu > X) bu = X;
     111         595 :   if (!u_forprime_init(&T, au, bu)) { set_avma(av0); return mkvec(gen_1); }
     112         581 :   v = vecsmall_ei(X, 1);
     113         581 :   V = vec_ei(X, 1);
     114         581 :   n = 1;
     115         581 :   if (Sbad) Sbad = direuler_Sbad(V, v, Sbad, &n);
     116         546 :   p = 1; gp = cgetipos(3); sqrtX = usqrt(X);
     117        8085 :   while (p <= sqrtX && (p = u_forprime_next(&T)))
     118        7560 :     if (!Sbad || umodiu(Sbad, p))
     119             :     {
     120        7455 :       long d = ulogint(X, p) + 1; /* minimal d such that p^d > X */
     121             :       GEN s;
     122        7455 :       gp[2] = p; s = eval(E, gp, d);
     123        7434 :       n = dirmuleuler_small(V, v, n, p, s, d);
     124             :     }
     125      739858 :   while ((p = u_forprime_next(&T))) /* sqrt(X) < p <= X */
     126      739333 :     if (!Sbad || umodiu(Sbad, p))
     127             :     {
     128             :       GEN s;
     129      739326 :       gp[2] = p; s = eval(E, gp, 2); /* s either t_POL or t_SER of val 0 */
     130      739326 :       if (lg(s) > 3 && !gequal0(gel(s,3)))
     131      139013 :         dirmuleuler_large(V, p, gel(s,3));
     132             :     }
     133         525 :   return gerepilecopy(av0,V);
     134             : }
     135             : 
     136             : /* return a t_SER or a truncated t_POL to precision n */
     137             : GEN
     138      751590 : direuler_factor(GEN s, long n)
     139             : {
     140      751590 :   long t = typ(s);
     141      751590 :   if (is_scalar_t(t))
     142             :   {
     143       33194 :     if (!gequal1(s)) err_direuler(s);
     144       33180 :     return scalarpol_shallow(s,0);
     145             :   }
     146      718396 :   switch(t)
     147             :   {
     148        5712 :     case t_POL: break; /* no need to RgXn_red */
     149      712369 :     case t_RFRAC:
     150             :     {
     151      712369 :       GEN p = gel(s,1), q = gel(s,2);
     152      712369 :       q = RgXn_red_shallow(q,n);
     153      712369 :       s = RgXn_inv(q, n);
     154      712369 :       if (typ(p) == t_POL && varn(p) == varn(q))
     155             :       {
     156          28 :         p = RgXn_red_shallow(p, n);
     157          28 :         s = RgXn_mul(s, p, n);
     158             :       }
     159             :       else
     160      712341 :         if (!gequal1(p)) s = RgX_Rg_mul(s, p);
     161      712369 :       if (!signe(s) || !gequal1(gel(s,2))) err_direuler(s);
     162      712355 :       break;
     163             :     }
     164         308 :     case t_SER:
     165         308 :       if (!signe(s) || valser(s) || !gequal1(gel(s,2))) err_direuler(s);
     166         308 :       break;
     167           7 :     default: pari_err_TYPE("direuler", s);
     168             :   }
     169      718375 :   return s;
     170             : }
     171             : 
     172             : struct eval_bad
     173             : {
     174             :   void *E;
     175             :   GEN (*eval)(void *, GEN);
     176             : };
     177             : static GEN
     178      687827 : eval_bad(void *E, GEN p, long n)
     179             : {
     180      687827 :   struct eval_bad *d = (struct eval_bad*) E;
     181      687827 :   return direuler_factor(d->eval(d->E, p), n);
     182             : }
     183             : GEN
     184         252 : direuler(void *E, GEN (*eval)(void *, GEN), GEN a, GEN b, GEN c)
     185             : {
     186             :   struct eval_bad d;
     187         252 :   d.E= E; d.eval = eval;
     188         252 :   return direuler_bad((void*)&d, eval_bad, a, b, c, NULL);
     189             : }
     190             : 
     191             : static GEN
     192       31157 : primelist(forprime_t *T, GEN Sbad, long n, long *running)
     193             : {
     194       31157 :   GEN P = cgetg(n+1, t_VECSMALL);
     195             :   long i, j;
     196      302631 :   for (i = 1, j = 1; i <= n; i++)
     197             :   {
     198      275548 :     ulong p = u_forprime_next(T);
     199      275548 :     if (!p) { *running = 0; break; }
     200      271474 :     if (Sbad && umodiu(Sbad, p)==0) continue;
     201      266791 :     uel(P,j++) = p;
     202             :   }
     203       31157 :   setlg(P, j);
     204       31157 :   return P;
     205             : }
     206             : 
     207             : GEN
     208        4081 : pardireuler(GEN worker, GEN a, GEN b, GEN c, GEN Sbad)
     209             : {
     210             :   ulong au, bu, X, sqrtX, n, snX, nX;
     211        4081 :   pari_sp av0 = avma;
     212             :   GEN v, V;
     213             :   forprime_t T;
     214             :   struct pari_mt pt;
     215        4081 :   long running = 1, pending = 0;
     216        4081 :   au = direulertou(a, gceil);
     217        4081 :   bu = direulertou(b, gfloor);
     218        4081 :   X = c ? direulertou(c, gfloor): bu;
     219        4081 :   if (X == 0) return cgetg(1,t_VEC);
     220        4081 :   if (bu > X) bu = X;
     221        4081 :   if (!u_forprime_init(&T, au, bu)) { set_avma(av0); return mkvec(gen_1); }
     222        4074 :   v = vecsmall_ei(X, 1);
     223        4074 :   V = vec_ei(X, 1);
     224        4074 :   n = 1;
     225        4074 :   if (Sbad) Sbad = direuler_Sbad(V, v, Sbad, &n);
     226        4074 :   sqrtX = usqrt(X); snX = uprimepi(sqrtX); nX = uprimepi(X);
     227        4074 :   if (snX)
     228             :   {
     229        4060 :     GEN P = primelist(&T, Sbad, snX, &running);
     230        4060 :     GEN R = gel(closure_callgenvec(worker, mkvec2(P, utoi(X))), 2);
     231        4060 :     long i, l = lg(P);
     232       20349 :     for (i = 1; i < l; i++)
     233             :     {
     234       16289 :       GEN s = gel(R,i);
     235       16289 :       n = dirmuleuler_small(V, v, n, uel(P,i), s, lg(s));
     236             :     }
     237          14 :   } else snX = 1;
     238        4074 :   mt_queue_start_lim(&pt, worker, (nX+snX-1)/snX);
     239       34711 :   while (running || pending)
     240             :   {
     241             :     GEN done;
     242       30637 :     GEN P = running? primelist(&T, Sbad, snX, &running): NULL;
     243       30637 :     mt_queue_submit(&pt, 0, P ? mkvec2(P, utoi(X)): NULL);
     244       30637 :     done = mt_queue_get(&pt, NULL, &pending);
     245       30637 :     if (done)
     246             :     {
     247       27097 :       GEN P = gel(done,1), R = gel(done,2);
     248       27097 :       long j, l = lg(P);
     249      277599 :       for (j=1; j<l; j++)
     250             :       {
     251      250502 :         GEN F = gel(R,j);
     252      250502 :         if (degpol(F) && !gequal0(gel(F,3)))
     253      169645 :           dirmuleuler_large(V, uel(P,j), gel(F,3));
     254             :       }
     255             :     }
     256             :   }
     257        4074 :   mt_queue_end(&pt);
     258        4074 :   return gerepilecopy(av0,V);
     259             : }
     260             : 
     261             : /********************************************************************/
     262             : /**                                                                **/
     263             : /**                 DIRPOWERS and DIRPOWERSSUM                     **/
     264             : /**                                                                **/
     265             : /********************************************************************/
     266             : 
     267             : /* [1^B,...,N^B] */
     268             : GEN
     269         686 : vecpowuu(long N, ulong B)
     270             : {
     271             :   GEN v;
     272             :   long p, i;
     273             :   forprime_t T;
     274             : 
     275         686 :   if (B <= 8000)
     276             :   {
     277         686 :     if (!B) return const_vec(N,gen_1);
     278         679 :     v = cgetg(N+1, t_VEC); if (N == 0) return v;
     279         679 :     gel(v,1) = gen_1;
     280         679 :     if (B == 1)
     281       92736 :       for (i = 2; i <= N; i++) gel(v,i) = utoipos(i);
     282         469 :     else if (B == 2)
     283             :     {
     284             :       ulong o, s;
     285         273 :       if (N & HIGHMASK)
     286           0 :         for (i = 2, o = 3; i <= N; i++, o += 2)
     287           0 :           gel(v,i) = addiu(gel(v,i-1), o);
     288             :       else
     289       31073 :         for (i = 2, s = 1, o = 3; i <= N; i++, s += o, o += 2)
     290       30800 :           gel(v,i) = utoipos(s + o);
     291             :     }
     292         196 :     else if (B == 3)
     293         840 :       for (i = 2; i <= N; i++) gel(v,i) = powuu(i, B);
     294             :     else
     295             :     {
     296         182 :       long k, Bk, e = expu(N);
     297        7553 :       for (i = 3; i <= N; i += 2) gel(v,i) = powuu(i, B);
     298        1239 :       for (k = 1; k <= e; k++)
     299             :       {
     300        1057 :         N >>= 1; Bk = B * k;
     301        8498 :         for (i = 1; i <= N; i += 2) gel(v, i << k) = shifti(gel(v, i), Bk);
     302             :       }
     303             :     }
     304         679 :     return v;
     305             :   }
     306           0 :   v = const_vec(N, NULL);
     307           0 :   u_forprime_init(&T, 3, N);
     308           0 :   while ((p = u_forprime_next(&T)))
     309             :   {
     310             :     long m, pk, oldpk;
     311           0 :     gel(v,p) = powuu(p, B);
     312           0 :     for (pk = p, oldpk = p; pk; oldpk = pk, pk = umuluu_le(pk,p,N))
     313             :     {
     314           0 :       if (pk != p) gel(v,pk) = mulii(gel(v,oldpk), gel(v,p));
     315           0 :       for (m = N/pk; m > 1; m--)
     316           0 :         if (gel(v,m) && m%p) gel(v, m*pk) = mulii(gel(v,m), gel(v,pk));
     317             :     }
     318             :   }
     319           0 :   gel(v,1) = gen_1;
     320           0 :   for (i = 2; i <= N; i+=2)
     321             :   {
     322           0 :     long vi = vals(i);
     323           0 :     gel(v,i) = shifti(gel(v,i >> vi), B * vi);
     324             :   }
     325           0 :   return v;
     326             : }
     327             : 
     328             : /* does n^s require log(x) ? */
     329             : static long
     330       11842 : get_needlog(GEN s)
     331             : {
     332       11842 :   switch(typ(s))
     333             :   {
     334         294 :     case t_REAL: return 2; /* yes but not powcx */
     335        8421 :     case t_COMPLEX: return 1; /* yes using powcx */
     336        3127 :     default: return 0; /* no */
     337             :   }
     338             : }
     339             : /* [1^B,...,N^B] */
     340             : GEN
     341       11954 : vecpowug(long N, GEN B, long prec)
     342             : {
     343       11954 :   GEN v, logp = NULL;
     344       11954 :   long gp[] = {evaltyp(t_INT)|_evallg(3), evalsigne(1)|evallgefint(3),0};
     345       11954 :   long p, precp = 2, prec0, prec1, needlog;
     346             :   forprime_t T;
     347       11954 :   if (N == 1) return mkvec(gen_1);
     348       11947 :   if (typ(B) == t_INT && lgefint(B) <= 3 && signe(B) >= 0)
     349         168 :     return vecpowuu(N, itou(B));
     350       11779 :   needlog = get_needlog(B);
     351       11779 :   prec1 = prec0 = prec;
     352       11779 :   if (needlog == 1) prec1 = powcx_prec(log2((double)N), B, prec);
     353       11779 :   u_forprime_init(&T, 2, N);
     354       11779 :   v = const_vec(N, NULL);
     355       11779 :   gel(v,1) = gen_1;
     356     1559236 :   while ((p = u_forprime_next(&T)))
     357             :   {
     358             :     long m, pk, oldpk;
     359             :     GEN u;
     360     1547457 :     gp[2] = p;
     361     1547457 :     if (needlog)
     362             :     {
     363       91306 :       if (!logp)
     364       17346 :         logp = logr_abs(utor(p, prec1));
     365             :       else
     366             :       { /* Assuming p and precp are odd,
     367             :          * log p = log(precp) + 2 atanh((p - precp) / (p + precp)) */
     368       73960 :         ulong a = p >> 1, b = precp >> 1; /* p = 2a + 1, precp = 2b + 1 */
     369       73960 :         GEN z = atanhuu(a - b, a + b + 1, prec1); /* avoid overflow */
     370       73960 :         shiftr_inplace(z, 1); logp = addrr(logp, z);
     371             :       }
     372       87782 :       u = needlog == 1? powcx(gp, logp, B, prec0)
     373       91306 :                       : mpexp(gmul(B, logp));
     374       91306 :       if (p == 2) logp = NULL; /* reset: precp must be odd */
     375             :     }
     376             :     else
     377     1456151 :       u = gpow(gp, B, prec0);
     378     1547457 :     precp = p;
     379     1547457 :     gel(v,p) = u; /* p^B */
     380     1547457 :     if (prec0 != prec) gel(v,p) = gprec_wtrunc(gel(v,p), prec);
     381     3207825 :     for (pk = p, oldpk = p; pk; oldpk = pk, pk = umuluu_le(pk,p,N))
     382             :     {
     383     1660368 :       if (pk != p) gel(v,pk) = gmul(gel(v,oldpk), gel(v,p));
     384    46218432 :       for (m = N/pk; m > 1; m--)
     385    44558064 :         if (gel(v,m) && m%p) gel(v, m*pk) = gmul(gel(v,m), gel(v,pk));
     386             :     }
     387             :   }
     388       11779 :   return v;
     389             : }
     390             : 
     391             : GEN
     392         665 : dirpowers(long n, GEN x, long prec)
     393             : {
     394             :   pari_sp av;
     395             :   GEN v;
     396         665 :   if (n <= 0) return cgetg(1, t_VEC);
     397         651 :   av = avma; v = vecpowug(n, x, prec);
     398         651 :   if (typ(x) == t_INT && lgefint(x) <= 3 && signe(x) >= 0 && cmpiu(x, 2) <= 0)
     399         133 :     return v;
     400         518 :   return gerepilecopy(av, v);
     401             : }
     402             : 
     403             : static GEN
     404         252 : vecmulsqlv(GEN Q, GEN V)
     405             : {
     406             :   long lq, i;
     407             :   GEN W;
     408         252 :   if (typ(V) != t_VEC) return RgV_Rg_mul(Q, V);
     409          21 :   lq = lg(Q); W = cgetg(lq, t_VEC);
     410         672 :   for (i = 1; i < lq; i++) gel(W, i) = vecmul(gel(Q, i), V);
     411          21 :   return W;
     412             : }
     413             : 
     414             : /* P = prime divisors of (squarefree) n, V[i] = i^s for i <= sq.
     415             :  * Return NULL if n is not sq-smooth, else f(n)n^s */
     416             : static GEN
     417      245126 : smallfact(ulong n, GEN P, ulong sq, GEN V)
     418             : {
     419             :   long i, l;
     420             :   ulong p, m, o;
     421             :   GEN c;
     422      245126 :   if (n <= sq) return gel(V,n);
     423      243845 :   l = lg(P); m = p = uel(P, l-1); if (p > sq) return NULL;
     424       48258 :   for (i = l-2; i > 1; i--, m = o) { p = uel(P,i); o = m*p; if (o > sq) break; }
     425       47950 :   c = gel(V,m); n /= m; /* m <= sq, o = m * p > sq */
     426       47950 :   if (n > sq) { c = vecmul(c, gel(V,p)); n /= p; }
     427       47950 :   return vecmul(c, gel(V,n));
     428             : }
     429             : 
     430             : static GEN
     431         357 : Qtor(GEN x, long prec)
     432             : {
     433         357 :   long tx = typ(x);
     434         357 :   if (tx == t_VEC || tx == t_COL)
     435             :   {
     436          21 :     long lx = lg(x), i;
     437          21 :     GEN V = cgetg(lx, tx);
     438          63 :     for (i = 1; i < lx; i++) gel(V, i) = Qtor(gel(x, i), prec);
     439          21 :     return V;
     440             :   }
     441         336 :   return tx == t_FRAC? fractor(x, prec): x;
     442             : }
     443             : 
     444             : /* Here N > 0 is small */
     445             : static GEN
     446         147 : naivedirpowerssum(long N, GEN s, void *E, GEN (*f)(void *, ulong, long),
     447             :                   long prec)
     448             : {
     449         147 :   GEN V = vecpowug(N, s, prec), S;
     450         147 :   if (!f) S = RgV_sum(V);
     451             :   else
     452             :   {
     453             :     long n;
     454          35 :     S = f(E, 1, prec);
     455         308 :     for (n = 2; n <= N; n++) S = gadd(S, gmul(gel(V, n), f(E, n, prec)));
     456             :   }
     457         147 :   return Qtor(S, prec);
     458             : }
     459             : 
     460             : static GEN
     461         126 : smalldirpowerssum(long N, GEN s, void *E, GEN (*f)(void *, ulong, long),
     462             :                   long both, long prec)
     463             : {
     464         126 :   GEN S = naivedirpowerssum(N, s, E, f, prec), SB, sb;
     465         126 :   if (!both) return S;
     466          42 :   sb = gconj(gsubsg(-1, s));
     467          42 :   SB = both==2 && gequal(s,sb)? S: gconj(naivedirpowerssum(N,sb,E,f,prec));
     468          42 :   return mkvec2(S, SB);
     469             : }
     470             : 
     471             : static GEN
     472          63 : dirpowsuminit(GEN s, void *E, GEN (*f)(void *, ulong, long), GEN data,
     473             :               long both, long prec)
     474             : {
     475          63 :   GEN onef = gel(data, 1), zervec = gel(data, 2), sqlpp = gel(data, 3);
     476          63 :   long sq = sqlpp[1], needlog = sqlpp[2], prec0 = sqlpp[3], prec1 = sqlpp[4];
     477          63 :   GEN V = cgetg(sq+1, t_VEC), W = cgetg(sq+1, t_VEC), Q = cgetg(sq+1, t_VEC);
     478          63 :   GEN VB = NULL, WB = NULL, QB = NULL, c2, c2B = NULL;
     479          63 :   GEN Q2, Q3, Q6, Q2B = NULL, Q3B = NULL, Q6B = NULL;
     480          63 :   GEN logp, R, RB = NULL;
     481          63 :   long gp[] = {evaltyp(t_INT)|_evallg(3), evalsigne(1)|evallgefint(3),0};
     482             :   long n;
     483          63 :   if (both == 1 || (both == 2 && !gequal(real_i(s), gneg(ghalf))))
     484          21 :   { VB = cgetg(sq+1, t_VEC); WB = cgetg(sq+1, t_VEC); QB = cgetg(sq+1, t_VEC);}
     485          63 :   gel(V, 1) = gel(W, 1) = gel(Q, 1) = onef;
     486          63 :   if (VB) { gel(VB, 1) = gel(WB, 1) = gel(QB, 1) = onef; }
     487          63 :   c2 = gpow(gen_2, s, prec0); if (VB) c2B = ginv(gmul2n(gconj(c2), 1));
     488          63 :   if (f)
     489             :   {
     490          42 :     GEN tmp2 = f(E, 2, prec);
     491          42 :     c2 = gmul(c2, tmp2); if (VB) c2B = gmul(c2B, tmp2);
     492             :   }
     493          63 :   gel(V,2) = c2; /* f(2) 2^s */
     494          63 :   gel(W,2) = Qtor(gadd(c2, onef), prec0);
     495          63 :   gel(Q,2) = Qtor(gadd(vecsqr(c2), onef), prec0);
     496          63 :   if (VB)
     497             :   {
     498          21 :     gel(VB, 2) = c2B; gel(WB, 2) = Qtor(gadd(c2B, onef), prec0);
     499          21 :     gel(QB, 2) = Qtor(gadd(vecsqr(c2B), onef), prec0);
     500             :   }
     501          63 :   logp = NULL;
     502        4074 :   for (n = 3; n <= sq; n++)
     503             :   {
     504        4011 :     GEN u = NULL, uB = NULL, ks = f ? f(E, n, prec0) : gen_1;
     505        4011 :     long zks = !gequal0(ks);
     506        4011 :     if (odd(n))
     507             :     {
     508        2023 :       gp[2] = n;
     509        2023 :       if (needlog)
     510             :       {
     511         476 :         if (!logp)
     512          42 :           logp = logr_abs(utor(n, prec1));
     513             :         else
     514             :         { /* log n = log(n-2) + 2 atanh(1 / (n - 1)) */
     515         434 :           GEN z = atanhuu(1, n - 1, prec1);
     516         434 :           shiftr_inplace(z, 1); logp = addrr(logp, z);
     517             :         }
     518         476 :         if (zks)
     519         476 :           u = needlog == 1? powcx(gp, logp, s, prec0) : mpexp(gmul(s, logp));
     520             :       }
     521        1547 :       else if (zks) u = gpow(gp, s, prec0);
     522        2023 :       if (zks)
     523             :       {
     524        2009 :         if (VB) uB = gmul(ginv(gmulsg(n, gconj(u))), ks);
     525        2009 :         u = gmul(u, ks); /* f(n) n^s */
     526             :       }
     527             :     }
     528             :     else
     529             :     {
     530        1988 :       u = vecmul(c2, gel(V, n >> 1));
     531        1988 :       if (VB) uB = vecmul(c2B, gel(VB, n >> 1));
     532             :     }
     533        4011 :     if (zks)
     534             :     { /* V[n]=f(n)n^s, W[n]=sum_{i<=n} f(i)i^s, Q[n]=sum_{i<=n} f(i^2)i^2s */
     535        3983 :       gel(V,n) = u;
     536        3983 :       gel(W,n) = gadd(gel(W, n-1), gel(V,n));
     537        3983 :       gel(Q,n) = gadd(gel(Q, n-1), vecsqr(gel(V,n)));
     538        3983 :       if (VB)
     539             :       {
     540         462 :         gel(VB,n) = uB;
     541         462 :         gel(WB,n) = gadd(gel(WB,n-1), gel(VB,n));
     542         462 :         gel(QB,n) = gadd(gel(QB,n-1), vecsqr(gel(VB,n)));
     543             :       }
     544             :     }
     545             :     else
     546             :     {
     547          28 :       gel(V,n) = zervec; gel(W,n) = gel(W, n-1); gel(Q,n) = gel(Q, n-1);
     548          28 :       if (VB)
     549             :       {
     550           0 :         gel(VB,n) = zervec; gel(WB,n) = gel(WB, n-1);
     551           0 :         gel(QB,n) = gel(QB, n-1);
     552             :       }
     553             :     }
     554             :   }
     555          63 :   Q2 = vecmulsqlv(Q, gel(V,2));
     556          63 :   Q3 = vecmulsqlv(Q, gel(V,3));
     557          63 :   Q6 = vecmulsqlv(Q, gel(V,6));
     558          63 :   if (VB)
     559             :   {
     560          21 :     Q2B = vecmulsqlv(QB, gel(VB,2));
     561          21 :     Q3B = vecmulsqlv(QB, gel(VB,3));
     562          21 :     Q6B = vecmulsqlv(QB, gel(VB,6));
     563             :   }
     564          63 :   R = mkvecn(6, V, W, Q, Q2, Q3, Q6);
     565          63 :   if (VB) RB = mkvecn(6, VB, WB, QB, Q2B, Q3B, Q6B);
     566          63 :   return VB ? mkvec2(R, RB) : mkvec(R);
     567             : }
     568             : 
     569             : static GEN
     570          63 : dirpowsumprimeloop(ulong N, GEN s, void *E, GEN (*f)(void *, ulong, long),
     571             :                    GEN data, GEN W, GEN WB)
     572             : {
     573             :   pari_sp av2;
     574          63 :   GEN zervec = gel(data, 2), S = zervec, SB = zervec, logp = NULL;
     575          63 :   GEN sqlpp = gel(data, 3);
     576             :   forprime_t T;
     577          63 :   long gp[] = {evaltyp(t_INT)|_evallg(3), evalsigne(1)|evallgefint(3),0};
     578          63 :   long p, precp = 0, sq = sqlpp[1], needlog = sqlpp[2];
     579          63 :   long prec0 = sqlpp[3], prec1 = sqlpp[4];
     580          63 :   u_forprime_init(&T, sq + 1, N);
     581          63 :   av2 = avma;
     582       80969 :   while ((p = u_forprime_next(&T)))
     583             :   {
     584       80906 :     GEN u = NULL, ks = f ? f(E, p, prec1) : gen_1;
     585       80906 :     long zks = !gequal0(ks);
     586       80906 :     gp[2] = p;
     587       80906 :     if (needlog)
     588             :     {
     589        4690 :       if (!logp)
     590          42 :         logp = logr_abs(utor(p, prec1));
     591             :       else
     592             :       { /* log p = log(precp) + 2 atanh((p - precp) / (p + precp)) */
     593        4648 :         ulong a = p >> 1, b = precp >> 1; /* p = 2a + 1, precp = 2b + 1 */
     594        4648 :         GEN z = atanhuu(a - b, a + b + 1, prec1); /* avoid overflow */
     595        4648 :         shiftr_inplace(z, 1); logp = addrr(logp, z);
     596             :       }
     597        4690 :       if (zks)
     598        4690 :         u = needlog == 1? powcx(gp, logp, s, prec0) : mpexp(gmul(s, logp));
     599             :     }
     600       76216 :     else { if (zks) u = gpow(gp, s, prec0); }
     601       80906 :     if (zks)
     602             :     {
     603       80906 :       S = gadd(S, vecmul(gel(W, N / p), gmul(ks, u)));
     604       80906 :       if (WB)
     605        2345 :         SB = gadd(SB, gdiv(vecmul(ks, gel(WB, N / p)), gmulsg(p, gconj(u))));
     606             :     }
     607       80906 :     precp = p;
     608       80906 :     if ((p & 0x1ff) == 1)
     609             :     {
     610         280 :       if (!logp) gerepileall(av2, SB? 2: 1, &S, &SB);
     611           0 :       else gerepileall(av2, SB? 3: 2, &S, &logp, &SB);
     612             :     }
     613             :   }
     614          63 :   return SB ? mkvec2(S, SB) : mkvec(S);
     615             : }
     616             : 
     617             : static GEN
     618         413 : dirpowsumsqfloop(long N, long x1, long x2, long sq, GEN P, GEN allvecs, GEN S,
     619             :                  GEN allvecsB, GEN SB)
     620             : {
     621         413 :   GEN V = gel(allvecs, 1), Q = gel(allvecs, 2), Q2 = gel(allvecs, 3);
     622         413 :   GEN Q3 = gel(allvecs, 4), Q6 = gel(allvecs, 5), Z = gel(allvecs, 6);
     623         413 :   GEN VB = NULL, QB = NULL, Q2B = NULL, Q3B = NULL, Q6B = NULL, ZB = NULL;
     624         413 :   GEN v = vecfactorsquarefreeu_coprime(x1, x2, P);
     625         413 :   long lv = lg(v), j;
     626         413 :   if (allvecsB)
     627             :   {
     628          21 :     VB = gel(allvecsB, 1), QB = gel(allvecsB, 2), Q2B = gel(allvecsB, 3);
     629          21 :     Q3B = gel(allvecsB, 4), Q6B = gel(allvecsB, 5), ZB = gel(allvecsB, 6);
     630             :   }
     631      806813 :   for (j = 1; j < lv; j++)
     632      806400 :     if (gel(v,j))
     633             :     {
     634      245126 :       ulong d = x1 - 1 + j; /* squarefree, coprime to 6 */
     635      245126 :       GEN t = smallfact(d, gel(v,j), sq, V), u;
     636      245126 :       GEN tB = NULL, uB = NULL; /* = d^s */
     637             :       long a, b, c, e, q;
     638      245126 :       if (!t || gequal0(t)) continue;
     639       48748 :       if (VB) tB = vecinv(gmulsg(d, gconj(t)));
     640             :       /* warning: gives 1/conj(f(d)) d^(-1-conj(s)), equal to
     641             :          f(d) d^(-1-conj(s)) only if |f(d)|=1. */
     642             :       /* S += f(d) * d^s * Z[q] */
     643       48748 :       q = N / d;
     644       48748 :       if (q == 1)
     645             :       {
     646       17339 :         S = gadd(S, t); if (VB) SB = gadd(SB, tB);
     647       17339 :         continue;
     648             :       }
     649       31409 :       if (q <= sq) { u = gel(Z, q); if (VB) uB = gel(ZB, q); }
     650             :       else
     651             :       {
     652        1274 :         a = usqrt(q); b = usqrt(q / 2); c = usqrt(q / 3); e = usqrt(q / 6);
     653        1274 :         u = gadd(gadd(gel(Q,a), gel(Q2,b)), gadd(gel(Q3,c), gel(Q6,e)));
     654        1274 :         if (VB)
     655         161 :           uB = gadd(gadd(gel(QB,a), gel(Q2B,b)), gadd(gel(Q3B,c), gel(Q6B,e)));
     656             :       }
     657       31409 :       S = gadd(S, vecmul(t, u)); if (VB) SB = gadd(SB, vecmul(tB, uB));
     658             :     }
     659         413 :   return VB ? mkvec2(S, SB) : mkvec(S);
     660             : }
     661             : 
     662             : static GEN
     663          63 : dirpowsummakez(GEN V, GEN W, GEN VB, GEN WB, GEN onef, ulong sq)
     664             : {
     665          63 :   GEN Z = cgetg(sq+1, t_VEC), ZB = NULL;
     666             :   ulong a, b, c, e, q;
     667             :   /* a,b,c,e = sqrt(q), sqrt(q/2), sqrt(q/3), sqrt(q/6)
     668             :    * Z[q] = Q[a] + 2^s Q[b] + 3^s Q[c] + 6^s Q[e], with Q[0] = 0 */
     669          63 :   gel(Z, 1) = onef;
     670          63 :   gel(Z, 2) = gel(W, 2);
     671          63 :   gel(Z, 3) = gel(W, 3);
     672          63 :   gel(Z, 4) = gel(Z, 5) = gel(W, 4);
     673          63 :   gel(Z, 6) = gel(Z, 7) = gadd(gel(W, 4), gel(V, 6));
     674          63 :   if (VB)
     675             :   {
     676          21 :     ZB = cgetg(sq+1, t_VEC);
     677          21 :     gel(ZB, 1) = onef;
     678          21 :     gel(ZB, 2) = gel(WB, 2);
     679          21 :     gel(ZB, 3) = gel(WB, 3);
     680          21 :     gel(ZB, 4) = gel(ZB, 5) = gel(WB, 4);
     681          21 :     gel(ZB, 6) = gel(ZB, 7) = gadd(gel(WB, 4), gel(VB, 6));
     682             :   }
     683          63 :   a = 2; b = c = e = 1;
     684        3759 :   for (q = 8; q <= sq; q++)
     685             :   { /* Gray code: at most one of a,b,c,d differs (by 1) from previous value */
     686        3696 :     GEN z = gel(Z, q - 1), zB = NULL;
     687             :     ulong na, nb, nc, ne, na2, nb2, nc2, ne2;
     688        3696 :     if (VB) zB = gel(ZB, q - 1);
     689        3696 :     if ((na = usqrt(q)) != a)
     690         280 :     { a = na; na2 = na * na; z = gadd(z, gel(V, na2));
     691         280 :       if (VB) zB = gadd(zB, gel(VB, na2)); }
     692        3416 :     else if ((nb = usqrt(q / 2)) != b)
     693         203 :     { b = nb; nb2 = 2 * nb * nb; z = gadd(z, gel(V, nb2));
     694         203 :       if (VB) zB = gadd(zB, gel(VB, nb2)); }
     695        3213 :     else if ((nc = usqrt(q / 3)) != c)
     696         161 :     { c = nc; nc2 = 3 * nc * nc; z = gadd(z, gel(V, nc2));
     697         161 :       if (VB) zB = gadd(zB, gel(VB, nc2)); }
     698        3052 :     else if ((ne = usqrt(q / 6)) != e)
     699          98 :     { e = ne; ne2 = 6 * ne * ne; z = gadd(z, gel(V, ne2));
     700          98 :       if (VB) zB = gadd(zB, gel(VB, ne2)); }
     701        3696 :     gel(Z, q) = z; if (VB) gel(ZB, q) = zB;
     702             :   }
     703          63 :   return VB ? mkvec2(Z, ZB) : mkvec(Z);
     704             : }
     705             : 
     706             : /* both =
     707             :  * 0: sum_{n<=N}f(n)n^s
     708             :  * 1: sum for (f,s) and (conj(f),-1-s)
     709             :  * 2: sum for (f,s) and (f,-1-s), assuming |f(n)| in {0,1} */
     710             : GEN
     711         203 : dirpowerssumfun(ulong N, GEN s, void *E, GEN (*f)(void *, ulong, long),
     712             :                 long both, long prec)
     713             : {
     714         203 :   const ulong step = 2048;
     715         203 :   pari_sp av = avma, av2;
     716             :   GEN P, V, W, Q, Q2, Q3, Q6, S, Z, onef, zervec;
     717         203 :   GEN VB = NULL, WB = NULL, QB = NULL;
     718         203 :   GEN Q2B = NULL, Q3B = NULL, Q6B = NULL, SB = NULL, ZB = NULL;
     719         203 :   GEN R, RS, data, allvecs, allvecsB = NULL;
     720             :   ulong x1, sq;
     721             :   long prec0, prec1, needlog;
     722             : 
     723         203 :   if (!N)
     724             :   {
     725          14 :     if (!f) return gen_0;
     726           0 :     return gerepileupto(av, gmul(gen_0, f(E, 1, prec)));
     727             :   }
     728         189 :   onef = f ? f(E, 1, prec) : gen_1;
     729         189 :   zervec = gmul(gen_0, onef);
     730         189 :   if ((f && N < 49) || (!f && N < 1000))
     731         126 :     return gerepilecopy(av, smalldirpowerssum(N, s, E, f, both, prec));
     732          63 :   sq = usqrt(N);
     733          63 :   prec1 = prec0 = prec + EXTRAPREC64;
     734          63 :   s = gprec_w(s, prec0);
     735          63 :   needlog = get_needlog(s);
     736          63 :   if (needlog == 1) prec1 = powcx_prec(log2((double)N), s, prec);
     737          63 :   data = mkvec3(onef, zervec, mkvecsmall4(sq, needlog, prec0, prec1));
     738          63 :   RS = dirpowsuminit(s, E, f, data, both, prec);
     739          63 :   R = gel(RS, 1); V = gel(R, 1); W = gel(R, 2); Q = gel(R, 3);
     740          63 :   Q2 = gel(R, 4); Q3 = gel(R, 5); Q6 = gel(R, 6);
     741          63 :   if (lg(RS) > 2)
     742             :   {
     743          21 :     GEN RB = gel(RS, 2);
     744          21 :     VB = gel(RB, 1); WB = gel(RB, 2); QB = gel(RB, 3);
     745          21 :     Q2B = gel(RB, 4); Q3B = gel(RB, 5); Q6B = gel(RB, 6);
     746             :   }
     747          63 :   RS = dirpowsumprimeloop(N, s, E, f, data, W, WB);
     748          63 :   S = gel(RS, 1); if (VB) SB = gel(RS, 2);
     749          63 :   RS = dirpowsummakez(V, W, VB, WB, onef, sq);
     750          63 :   Z = gel(RS, 1); if (VB) ZB = gel(RS, 2);
     751          63 :   P = mkvecsmall2(2, 3);
     752          63 :   allvecs = mkvecn(6, V, Q, Q2, Q3, Q6, Z);
     753          63 :   if (VB) allvecsB = mkvecn(6, VB, QB, Q2B, Q3B, Q6B, ZB);
     754          63 :   av2 = avma;
     755          63 :   for(x1 = 1;; x1 += step)
     756         350 :   { /* beware overflow, fuse last two bins (avoid a tiny remainder) */
     757         413 :     ulong x2 = (N >= 2*step && N - 2*step >= x1)? x1-1 + step: N;
     758         413 :     RS = dirpowsumsqfloop(N, x1, x2, sq, P, allvecs, S, allvecsB, SB);
     759         413 :     S = gel(RS, 1); if (VB) SB = gel(RS, 2);
     760         413 :     if (x2 == N) break;
     761         350 :     gerepileall(av2, SB? 2: 1, &S, &SB);
     762             :   }
     763          63 :   if (both == 0) return gerepileupto(av, S);
     764          42 :   return gerepilecopy(av, mkvec2(S, gconj(VB? SB: S)));
     765             : }
     766             : 
     767             : GEN
     768         133 : dirpowerssum(ulong N, GEN s, long both, long prec)
     769         133 : { return dirpowerssumfun(N, s, NULL, NULL, both, prec); }
     770             : 
     771             : static GEN
     772       13846 : gp_callUp(void *E, ulong x, long prec)
     773             : {
     774       13846 :   long court[] = {evaltyp(t_INT)|_evallg(3), evalsigne(1)|evallgefint(3),0};
     775       13846 :   court[2] = x; return gp_callprec(E, court, prec);
     776             : }
     777             : 
     778             : GEN
     779         154 : dirpowerssum0(GEN N, GEN s, GEN f, long both, long prec)
     780             : {
     781         154 :   if (typ(N) != t_INT) pari_err_TYPE("dirpowerssum", N);
     782         147 :   if (signe(N) <= 0) N = gen_0;
     783         147 :   if (!f) return dirpowerssum(itou(N), s, both, prec);
     784          70 :   if (typ(f) != t_CLOSURE) pari_err_TYPE("dirpowerssum", f);
     785          70 :   return dirpowerssumfun(itou(N), s, (void*)f, gp_callUp, both, prec);
     786             : }

Generated by: LCOV version 1.14