Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - base4.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 29875-1c62f24b5e) Lines: 1697 1846 91.9 %
Date: 2025-01-17 09:09:20 Functions: 170 185 91.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2000  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : /*******************************************************************/
      16             : /*                                                                 */
      17             : /*                       BASIC NF OPERATIONS                       */
      18             : /*                           (continued)                           */
      19             : /*                                                                 */
      20             : /*******************************************************************/
      21             : #include "pari.h"
      22             : #include "paripriv.h"
      23             : 
      24             : #define DEBUGLEVEL DEBUGLEVEL_nf
      25             : 
      26             : /*******************************************************************/
      27             : /*                                                                 */
      28             : /*                     IDEAL OPERATIONS                            */
      29             : /*                                                                 */
      30             : /*******************************************************************/
      31             : 
      32             : /* A valid ideal is either principal (valid nf_element), or prime, or a matrix
      33             :  * on the integer basis in HNF.
      34             :  * A prime ideal is of the form [p,a,e,f,b], where the ideal is p.Z_K+a.Z_K,
      35             :  * p is a rational prime, a belongs to Z_K, e=e(P/p), f=f(P/p), and b
      36             :  * is Lenstra's constant, such that p.P^(-1)= p Z_K + b Z_K.
      37             :  *
      38             :  * An extended ideal is a couple [I,F] where I is an ideal and F is either an
      39             :  * algebraic number, or a factorization matrix attached to an algebraic number.
      40             :  * All routines work with either extended ideals or ideals (an omitted F is
      41             :  * assumed to be factor(1)). All ideals are output in HNF form. */
      42             : 
      43             : /* types and conversions */
      44             : 
      45             : long
      46    15840608 : idealtyp(GEN *ideal, GEN *arch)
      47             : {
      48    15840608 :   GEN x = *ideal;
      49    15840608 :   long t,lx,tx = typ(x);
      50             : 
      51    15840608 :   if (tx!=t_VEC || lg(x)!=3) { if (arch) *arch = NULL; }
      52             :   else
      53             :   {
      54     1239736 :     GEN a = gel(x,2);
      55     1239736 :     if (typ(a) == t_MAT && lg(a) != 3)
      56             :     { /* allow [;] */
      57          14 :       if (lg(a) != 1) pari_err_TYPE("idealtyp [extended ideal]",x);
      58           7 :       if (arch) *arch = trivial_fact();
      59             :     }
      60             :     else
      61     1239722 :       if (arch) *arch = a;
      62     1239729 :     x = gel(x,1); tx = typ(x);
      63             :   }
      64    15840601 :   switch(tx)
      65             :   {
      66    12017902 :     case t_MAT: lx = lg(x);
      67    12017902 :       if (lx == 1) { t = id_PRINCIPAL; x = gen_0; break; }
      68    12017741 :       if (lx != lgcols(x)) pari_err_TYPE("idealtyp [nonsquare t_MAT]",x);
      69    12017685 :       t = id_MAT;
      70    12017685 :       break;
      71             : 
      72     2885127 :     case t_VEC:
      73     2885127 :       if (!checkprid_i(x)) pari_err_TYPE("idealtyp [fake prime ideal]",x);
      74     2885080 :       t = id_PRIME; break;
      75             : 
      76      937851 :     case t_POL: case t_POLMOD: case t_COL:
      77             :     case t_INT: case t_FRAC:
      78      937851 :       t = id_PRINCIPAL; break;
      79           6 :     default:
      80           6 :       pari_err_TYPE("idealtyp",x);
      81             :       return 0; /*LCOV_EXCL_LINE*/
      82             :   }
      83    15840777 :   *ideal = x; return t;
      84             : }
      85             : 
      86             : /* true nf; v = [a,x,...], a in Z. Return (a,x) */
      87             : GEN
      88      738548 : idealhnf_two(GEN nf, GEN v)
      89             : {
      90      738548 :   GEN p = gel(v,1), pi = gel(v,2), m = zk_scalar_or_multable(nf, pi);
      91      738550 :   if (typ(m) == t_INT) return scalarmat(gcdii(m,p), nf_get_degree(nf));
      92      665463 :   return ZM_hnfmodid(m, p);
      93             : }
      94             : /* true nf */
      95             : GEN
      96     3580348 : pr_hnf(GEN nf, GEN pr)
      97             : {
      98     3580348 :   GEN p = pr_get_p(pr), m;
      99     3580327 :   if (pr_is_inert(pr)) return scalarmat(p, nf_get_degree(nf));
     100     3144178 :   m = zk_scalar_or_multable(nf, pr_get_gen(pr));
     101     3143811 :   return ZM_hnfmodprime(m, p);
     102             : }
     103             : 
     104             : GEN
     105     1309400 : idealhnf_principal(GEN nf, GEN x)
     106             : {
     107             :   GEN cx;
     108     1309400 :   x = nf_to_scalar_or_basis(nf, x);
     109     1309396 :   switch(typ(x))
     110             :   {
     111     1050829 :     case t_COL: break;
     112      240805 :     case t_INT:  if (!signe(x)) return cgetg(1,t_MAT);
     113      239174 :       return scalarmat(absi_shallow(x), nf_get_degree(nf));
     114       17762 :     case t_FRAC:
     115       17762 :       return scalarmat(Q_abs_shallow(x), nf_get_degree(nf));
     116           0 :     default: pari_err_TYPE("idealhnf",x);
     117             :   }
     118     1050829 :   x = Q_primitive_part(x, &cx);
     119     1050825 :   RgV_check_ZV(x, "idealhnf");
     120     1050825 :   x = zk_multable(nf, x);
     121     1050819 :   x = ZM_hnfmodid(x, zkmultable_capZ(x));
     122     1050826 :   return cx? ZM_Q_mul(x,cx): x;
     123             : }
     124             : 
     125             : /* true nf; x integral Z_K-module as t_MAT generated by its columns.
     126             :  * Return square hnf representation */
     127             : static GEN
     128          91 : vec_mulid(GEN nf, GEN x)
     129             : {
     130          91 :   long i, j, l = lg(x);
     131          91 :   GEN D = NULL, v;
     132          91 :   v = cgetg(l, t_VEC);
     133         196 :   for (i = j = 1; i < l; i++)
     134             :   {
     135             :     GEN m, d;
     136         161 :     if (D && ZV_Z_dvd(gel(x,i), D)) l--;
     137         161 :     gel(v,j++) = m = zk_multable(nf, gel(x,i));
     138         161 :     d = zkmultable_capZ(m);
     139         161 :     D = D? gcdii(D, d): d;
     140         161 :     if (is_pm1(D)) return matid(lg(m)-1);
     141             :   }
     142          35 :   setlg(v, l); if (l == 1) return cgetg(1, t_MAT);
     143          35 :   return ZM_hnfmodid(shallowconcat1(v), D);
     144             : }
     145             : 
     146             : static GEN
     147          84 : nfV_idealhnf(GEN nf, GEN v, GEN *pden)
     148             : {
     149          84 :   GEN H = ZM_hnf(Q_remove_denom(matalgtobasis(nf, v), pden));
     150          84 :   return vec_mulid(nf, H);
     151             : }
     152             : 
     153             : /* true nf */
     154             : GEN
     155     1720846 : idealhnf_shallow(GEN nf, GEN x)
     156             : {
     157     1720846 :   long tx = typ(x), lx = lg(x), N;
     158             : 
     159             :   /* cannot use idealtyp because here we allow nonsquare matrices */
     160     1720846 :   if (tx == t_VEC && lx == 3) { x = gel(x,1); tx = typ(x); lx = lg(x); }
     161     1720846 :   if (tx == t_VEC && lx == 6)
     162             :   {
     163      484554 :     if (!checkprid_i(x)) pari_err_TYPE("idealhnf [fake prime ideal]",x);
     164      484543 :     return pr_hnf(nf,x); /* PRIME */
     165             :   }
     166     1236292 :   switch(tx)
     167             :   {
     168       90756 :     case t_MAT:
     169             :     {
     170             :       GEN cx;
     171       90756 :       long nx = lx-1;
     172       90756 :       N = nf_get_degree(nf);
     173       90756 :       if (nx == 0) return cgetg(1, t_MAT);
     174       90735 :       if (nbrows(x) != N) pari_err_TYPE("idealhnf [wrong dimension]",x);
     175       90728 :       if (nx == 1) return idealhnf_principal(nf, gel(x,1));
     176             : 
     177       73985 :       if (nx == N && RgM_is_ZM(x) && ZM_ishnf(x)) return x;
     178       46361 :       x = Q_primitive_part(x, &cx);
     179       46361 :       if (nx < N)
     180           7 :         x = vec_mulid(nf, x); /* build ZK-module generated from cols */
     181             :       else
     182       46354 :         x = ZM_hnfmod(x, ZM_detmult(x)); /* assume Z-span cols is ZK-module */
     183       46361 :       return cx? ZM_Q_mul(x,cx): x;
     184             :     }
     185          14 :     case t_QFB:
     186             :     {
     187          14 :       pari_sp av = avma;
     188          14 :       GEN u, D = nf_get_disc(nf), T = nf_get_pol(nf), f = nf_get_index(nf);
     189          14 :       GEN A = gel(x,1), B = gel(x,2);
     190          14 :       N = nf_get_degree(nf);
     191          14 :       if (N != 2)
     192           0 :         pari_err_TYPE("idealhnf [Qfb for nonquadratic fields]", x);
     193          14 :       if (!equalii(qfb_disc(x), D))
     194           7 :         pari_err_DOMAIN("idealhnf [Qfb]", "disc(q)", "!=", D, x);
     195             :       /* x -> A Z + (-B + sqrt(D)) / 2 Z
     196             :          K = Q[t]/T(t), t^2 + ut + v = 0,  u^2 - 4v = Df^2
     197             :          => t = (-u + sqrt(D) f)/2
     198             :          => sqrt(D)/2 = (t + u/2)/f */
     199           7 :       u = gel(T,3);
     200           7 :       B = deg1pol_shallow(ginv(f),
     201             :                           gsub(gdiv(u, shifti(f,1)), gdiv(B,gen_2)),
     202           7 :                           varn(T));
     203           7 :       return gerepileupto(av, idealhnf_two(nf, mkvec2(A,B)));
     204             :     }
     205     1145522 :     default: return idealhnf_principal(nf, x); /* PRINCIPAL */
     206             :   }
     207             : }
     208             : /* true nf */
     209             : GEN
     210         595 : idealhnf(GEN nf, GEN x)
     211             : {
     212         595 :   pari_sp av = avma;
     213         595 :   GEN y = idealhnf_shallow(nf, x);
     214         581 :   return (avma == av)? gcopy(y): gerepileupto(av, y);
     215             : }
     216             : 
     217             : static GEN
     218          84 : nfV_eltembed(GEN nf, GEN x, long prec)
     219         518 : { pari_APPLY_type(t_VEC, nfeltembed(nf, gel(x,i), NULL, prec)) }
     220             : 
     221             : /* true nf */
     222             : static GEN
     223          84 : nfweilheight_i(GEN nf, GEN v, long prec)
     224             : {
     225          84 :   long i, j, r1, r2, u, N, l = lg(v);
     226          84 :   GEN den, h = gen_1, id = nfV_idealhnf(nf, v, &den);
     227          84 :   GEN V = nfV_eltembed(nf, v, prec);
     228             : 
     229          84 :   nf_get_sign(nf, &r1, &r2); u = r1 + r2; N = u + r2;
     230         259 :   for (i = 1; i <= r1; i++)
     231        1029 :     for (j = 1; j < l; j++) gmael(V,j,i) = gabs(gmael(V,j,i), prec);
     232         343 :   for (     ; i <= u; i++)
     233        1771 :     for (j = 1; j < l; j++) gmael(V,j,i) = gnorm(gmael(V,j,i));
     234         518 :   for (i = 1; i <= u; i++)
     235             :   {
     236         434 :     long j0 = 1;
     237        2366 :     for (j = 2; j < l; j++)
     238        1932 :       if (gcmp(gmael(V,j,i), gmael(V,j0,i)) > 0) j0 = j;
     239         434 :     h = gmul(h, gmael(V,j0,i));
     240             :   }
     241          84 :   if (den) h = gmul(h, powiu(den, N));
     242          84 :   return divru(glog(gdiv(h, idealnorm(nf, id)), prec), N);
     243             : }
     244             : 
     245             : GEN
     246          84 : nfweilheight(GEN nf, GEN v, long prec)
     247             : {
     248          84 :   pari_sp av = avma;
     249          84 :   nf = checknf(nf);
     250          84 :   if (!is_vec_t(typ(v)) || lg(v) < 2) pari_err_TYPE("nfweilheight",v);
     251          84 :   return gerepileupto(av, nfweilheight_i(nf, v, prec));
     252             : }
     253             : 
     254             : /* GP functions */
     255             : 
     256             : GEN
     257        2485 : idealtwoelt0(GEN nf, GEN x, GEN a)
     258             : {
     259        2485 :   if (!a) return idealtwoelt(nf,x);
     260          42 :   return idealtwoelt2(nf,x,a);
     261             : }
     262             : 
     263             : GEN
     264        2499 : idealpow0(GEN nf, GEN x, GEN n, long flag)
     265             : {
     266        2499 :   if (flag) return idealpowred(nf,x,n);
     267        2492 :   return idealpow(nf,x,n);
     268             : }
     269             : 
     270             : GEN
     271          70 : idealmul0(GEN nf, GEN x, GEN y, long flag)
     272             : {
     273          70 :   if (flag) return idealmulred(nf,x,y);
     274          63 :   return idealmul(nf,x,y);
     275             : }
     276             : 
     277             : GEN
     278          56 : idealdiv0(GEN nf, GEN x, GEN y, long flag)
     279             : {
     280          56 :   switch(flag)
     281             :   {
     282          28 :     case 0: return idealdiv(nf,x,y);
     283          28 :     case 1: return idealdivexact(nf,x,y);
     284           0 :     default: pari_err_FLAG("idealdiv");
     285             :   }
     286             :   return NULL; /* LCOV_EXCL_LINE */
     287             : }
     288             : 
     289             : GEN
     290          70 : idealaddtoone0(GEN nf, GEN arg1, GEN arg2)
     291             : {
     292          70 :   if (!arg2) return idealaddmultoone(nf,arg1);
     293          35 :   return idealaddtoone(nf,arg1,arg2);
     294             : }
     295             : 
     296             : /* b not a scalar */
     297             : static GEN
     298          77 : hnf_Z_ZC(GEN nf, GEN a, GEN b) { return hnfmodid(zk_multable(nf,b), a); }
     299             : /* b not a scalar */
     300             : static GEN
     301          70 : hnf_Z_QC(GEN nf, GEN a, GEN b)
     302             : {
     303             :   GEN db;
     304          70 :   b = Q_remove_denom(b, &db);
     305          70 :   if (db) a = mulii(a, db);
     306          70 :   b = hnf_Z_ZC(nf,a,b);
     307          70 :   return db? RgM_Rg_div(b, db): b;
     308             : }
     309             : /* b not a scalar (not point in trying to optimize for this case) */
     310             : static GEN
     311          77 : hnf_Q_QC(GEN nf, GEN a, GEN b)
     312             : {
     313             :   GEN da, db;
     314          77 :   if (typ(a) == t_INT) return hnf_Z_QC(nf, a, b);
     315           7 :   da = gel(a,2);
     316           7 :   a = gel(a,1);
     317           7 :   b = Q_remove_denom(b, &db);
     318             :   /* write da = d*A, db = d*B, gcd(A,B) = 1
     319             :    * gcd(a/(d A), b/(d B)) = gcd(a B, A b) / A B d = gcd(a B, b) / A B d */
     320           7 :   if (db)
     321             :   {
     322           7 :     GEN d = gcdii(da,db);
     323           7 :     if (!is_pm1(d)) db = diviiexact(db,d); /* B */
     324           7 :     if (!is_pm1(db))
     325             :     {
     326           7 :       a = mulii(a, db); /* a B */
     327           7 :       da = mulii(da, db); /* A B d = lcm(denom(a),denom(b)) */
     328             :     }
     329             :   }
     330           7 :   return RgM_Rg_div(hnf_Z_ZC(nf,a,b), da);
     331             : }
     332             : static GEN
     333           7 : hnf_QC_QC(GEN nf, GEN a, GEN b)
     334             : {
     335             :   GEN da, db, d, x;
     336           7 :   a = Q_remove_denom(a, &da);
     337           7 :   b = Q_remove_denom(b, &db);
     338           7 :   if (da) b = ZC_Z_mul(b, da);
     339           7 :   if (db) a = ZC_Z_mul(a, db);
     340           7 :   d = mul_denom(da, db);
     341           7 :   a = zk_multable(nf,a); da = zkmultable_capZ(a);
     342           7 :   b = zk_multable(nf,b); db = zkmultable_capZ(b);
     343           7 :   x = ZM_hnfmodid(shallowconcat(a,b), gcdii(da,db));
     344           7 :   return d? RgM_Rg_div(x, d): x;
     345             : }
     346             : static GEN
     347          21 : hnf_Q_Q(GEN nf, GEN a, GEN b) {return scalarmat(Q_gcd(a,b), nf_get_degree(nf));}
     348             : GEN
     349         413 : idealhnf0(GEN nf, GEN a, GEN b)
     350             : {
     351             :   long ta, tb;
     352             :   pari_sp av;
     353             :   GEN x;
     354         413 :   nf = checknf(nf);
     355         413 :   if (!b) return idealhnf(nf,a);
     356             : 
     357             :   /* HNF of aZ_K+bZ_K */
     358         112 :   av = avma;
     359         112 :   a = nf_to_scalar_or_basis(nf,a); ta = typ(a);
     360         112 :   b = nf_to_scalar_or_basis(nf,b); tb = typ(b);
     361         105 :   if (ta == t_COL)
     362          14 :     x = (tb==t_COL)? hnf_QC_QC(nf, a,b): hnf_Q_QC(nf, b,a);
     363             :   else
     364          91 :     x = (tb==t_COL)? hnf_Q_QC(nf, a,b): hnf_Q_Q(nf, a,b);
     365         105 :   return gerepileupto(av, x);
     366             : }
     367             : 
     368             : /*******************************************************************/
     369             : /*                                                                 */
     370             : /*                       TWO-ELEMENT FORM                          */
     371             : /*                                                                 */
     372             : /*******************************************************************/
     373             : static GEN idealapprfact_i(GEN nf, GEN x, int nored);
     374             : 
     375             : static int
     376      223301 : ok_elt(GEN x, GEN xZ, GEN y)
     377             : {
     378      223301 :   pari_sp av = avma;
     379      223301 :   return gc_bool(av, ZM_equal(x, ZM_hnfmodid(y, xZ)));
     380             : }
     381             : 
     382             : /* a + s * b, a and b ZM, s integer */
     383             : static GEN
     384       65132 : addmul_mat(GEN a, GEN s, GEN b)
     385             : {
     386       65132 :   if (!signe(s)) return a;
     387       56458 :   if (!equali1(s)) b = ZM_Z_mul(b, s);
     388       56458 :   return a? ZM_add(a, b): b;
     389             : }
     390             : 
     391             : static GEN
     392      117237 : get_random_a(GEN nf, GEN x, GEN xZ)
     393             : {
     394             :   pari_sp av;
     395      117237 :   long i, lm, l = lg(x);
     396             :   GEN z, beta, mul;
     397             : 
     398      117237 :   beta= cgetg(l, t_MAT);
     399      117237 :   mul = cgetg(l, t_VEC); lm = 1; /* = lg(mul) */
     400             :   /* look for a in x such that a O/xZ = x O/xZ */
     401      248234 :   for (i = 2; i < l; i++)
     402             :   {
     403      238440 :     GEN xi = gel(x,i);
     404      238440 :     GEN t = FpM_red(zk_multable(nf,xi), xZ); /* ZM, cannot be a scalar */
     405      238436 :     if (gequal0(t)) continue;
     406      195603 :     if (ok_elt(x,xZ, t)) return xi;
     407       88160 :     gel(beta,lm) = xi;
     408             :     /* mul[i] = { canonical generators for x[i] O/xZ as Z-module } */
     409       88160 :     gel(mul,lm) = t; lm++;
     410             :   }
     411        9794 :   setlg(mul, lm);
     412        9794 :   setlg(beta,lm); z = cgetg(lm, t_VEC);
     413       29544 :   for(av = avma;; set_avma(av))
     414       19750 :   {
     415       29544 :     GEN a = NULL;
     416       94676 :     for (i = 1; i < lm; i++)
     417             :     {
     418       65132 :       gel(z,i) = randomi(xZ);
     419       65132 :       a = addmul_mat(a, gel(z,i), gel(mul,i));
     420             :     }
     421             :     /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */
     422       29544 :     if (a && ok_elt(x,xZ, a)) break;
     423             :   }
     424        9794 :   return ZM_ZC_mul(beta, z);
     425             : }
     426             : 
     427             : /* x square matrix, assume it is HNF */
     428             : static GEN
     429      249754 : mat_ideal_two_elt(GEN nf, GEN x)
     430             : {
     431             :   GEN y, a, cx, xZ;
     432      249754 :   long N = nf_get_degree(nf);
     433             :   pari_sp av, tetpil;
     434             : 
     435      249754 :   if (lg(x)-1 != N) pari_err_DIM("idealtwoelt");
     436      249740 :   if (N == 2) return mkvec2copy(gcoeff(x,1,1), gel(x,2));
     437             : 
     438      135642 :   y = cgetg(3,t_VEC); av = avma;
     439      135642 :   cx = Q_content(x);
     440      135642 :   xZ = gcoeff(x,1,1);
     441      135642 :   if (gequal(xZ, cx)) /* x = (cx) */
     442             :   {
     443        7427 :     gel(y,1) = cx;
     444        7427 :     gel(y,2) = gen_0; return y;
     445             :   }
     446      128215 :   if (equali1(cx)) cx = NULL;
     447             :   else
     448             :   {
     449        1007 :     x = Q_div_to_int(x, cx);
     450        1007 :     xZ = gcoeff(x,1,1);
     451             :   }
     452      128215 :   if (N < 6)
     453      108815 :     a = get_random_a(nf, x, xZ);
     454             :   else
     455             :   {
     456       19400 :     const long FB[] = { _evallg(15+1) | evaltyp(t_VECSMALL),
     457             :       2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
     458             :     };
     459       19400 :     GEN P, E, a1 = Z_lsmoothen(xZ, (GEN)FB, &P, &E);
     460       19400 :     if (!a1) /* factors completely */
     461       10978 :       a = idealapprfact_i(nf, idealfactor(nf,x), 1);
     462        8422 :     else if (lg(P) == 1) /* no small factors */
     463        2610 :       a = get_random_a(nf, x, xZ);
     464             :     else /* general case */
     465             :     {
     466             :       GEN A0, A1, a0, u0, u1, v0, v1, pi0, pi1, t, u;
     467        5812 :       a0 = diviiexact(xZ, a1);
     468        5812 :       A0 = ZM_hnfmodid(x, a0); /* smooth part of x */
     469        5812 :       A1 = ZM_hnfmodid(x, a1); /* cofactor */
     470        5812 :       pi0 = idealapprfact_i(nf, idealfactor(nf,A0), 1);
     471        5812 :       pi1 = get_random_a(nf, A1, a1);
     472        5812 :       (void)bezout(a0, a1, &v0,&v1);
     473        5812 :       u0 = mulii(a0, v0);
     474        5812 :       u1 = mulii(a1, v1);
     475        5812 :       if (typ(pi0) != t_COL) t = addmulii(u0, pi0, u1);
     476             :       else
     477        5812 :       { t = ZC_Z_mul(pi0, u1); gel(t,1) = addii(gel(t,1), u0); }
     478        5812 :       u = ZC_Z_mul(pi1, u0); gel(u,1) = addii(gel(u,1), u1);
     479        5812 :       a = nfmuli(nf, centermod(u, xZ), centermod(t, xZ));
     480             :     }
     481             :   }
     482      128215 :   if (cx)
     483             :   {
     484        1007 :     a = centermod(a, xZ);
     485        1007 :     tetpil = avma;
     486        1007 :     if (typ(cx) == t_INT)
     487             :     {
     488          91 :       gel(y,1) = mulii(xZ, cx);
     489          91 :       gel(y,2) = ZC_Z_mul(a, cx);
     490             :     }
     491             :     else
     492             :     {
     493         916 :       gel(y,1) = gmul(xZ, cx);
     494         916 :       gel(y,2) = RgC_Rg_mul(a, cx);
     495             :     }
     496             :   }
     497             :   else
     498             :   {
     499      127208 :     tetpil = avma;
     500      127208 :     gel(y,1) = icopy(xZ);
     501      127207 :     gel(y,2) = centermod(a, xZ);
     502             :   }
     503      128215 :   gerepilecoeffssp(av,tetpil,y+1,2); return y;
     504             : }
     505             : 
     506             : /* Given an ideal x, returns [a,alpha] such that a is in Q,
     507             :  * x = a Z_K + alpha Z_K, alpha in K^*
     508             :  * a = 0 or alpha = 0 are possible, but do not try to determine whether
     509             :  * x is principal. */
     510             : GEN
     511       96818 : idealtwoelt(GEN nf, GEN x)
     512             : {
     513             :   pari_sp av;
     514       96818 :   long tx = idealtyp(&x, NULL);
     515       96811 :   nf = checknf(nf);
     516       96811 :   if (tx == id_MAT) return mat_ideal_two_elt(nf,x);
     517         700 :   if (tx == id_PRIME) return mkvec2copy(gel(x,1), gel(x,2));
     518             :   /* id_PRINCIPAL */
     519         679 :   av = avma; x = nf_to_scalar_or_basis(nf, x);
     520        1162 :   return gerepilecopy(av, typ(x)==t_COL? mkvec2(gen_0,x):
     521         574 :                                          mkvec2(Q_abs_shallow(x),gen_0));
     522             : }
     523             : 
     524             : /*******************************************************************/
     525             : /*                                                                 */
     526             : /*                         FACTORIZATION                           */
     527             : /*                                                                 */
     528             : /*******************************************************************/
     529             : /* x integral ideal in HNF, Zval = v_p(x \cap Z) > 0; return v_p(Nx) */
     530             : static long
     531     4043312 : idealHNF_norm_pval(GEN x, GEN p, long Zval)
     532             : {
     533     4043312 :   long i, v = Zval, l = lg(x);
     534    31739604 :   for (i = 2; i < l; i++) v += Z_pval(gcoeff(x,i,i), p);
     535     4043323 :   return v;
     536             : }
     537             : 
     538             : /* x integral in HNF, f0 = partial factorization of a multiple of
     539             :  * x[1,1] = x\cap Z */
     540             : GEN
     541      285663 : idealHNF_Z_factor_i(GEN x, GEN f0, GEN *pvN, GEN *pvZ)
     542             : {
     543      285663 :   GEN P, E, vN, vZ, xZ = gcoeff(x,1,1), f = f0? f0: Z_factor(xZ);
     544             :   long i, l;
     545      285675 :   P = gel(f,1); l = lg(P);
     546      285675 :   E = gel(f,2);
     547      285675 :   *pvN = vN = cgetg(l, t_VECSMALL);
     548      285683 :   *pvZ = vZ = cgetg(l, t_VECSMALL);
     549      713505 :   for (i = 1; i < l; i++)
     550             :   {
     551      427817 :     GEN p = gel(P,i);
     552      427817 :     vZ[i] = f0? Z_pval(xZ, p): (long) itou(gel(E,i));
     553      427819 :     vN[i] = idealHNF_norm_pval(x,p, vZ[i]);
     554             :   }
     555      285688 :   return P;
     556             : }
     557             : /* return P, primes dividing Nx and xZ = x\cap Z, set v_p(Nx), v_p(xZ);
     558             :  * x integral in HNF */
     559             : GEN
     560           0 : idealHNF_Z_factor(GEN x, GEN *pvN, GEN *pvZ)
     561           0 : { return idealHNF_Z_factor_i(x, NULL, pvN, pvZ); }
     562             : 
     563             : /* v_P(A)*f(P) <= Nval [e.g. Nval = v_p(Norm A)], Zval = v_p(A \cap Z).
     564             :  * Return v_P(A) */
     565             : static long
     566     4178872 : idealHNF_val(GEN A, GEN P, long Nval, long Zval)
     567             : {
     568     4178872 :   long f = pr_get_f(P), vmax, v, e, i, j, k, l;
     569             :   GEN mul, B, a, y, r, p, pk, cx, vals;
     570             :   pari_sp av;
     571             : 
     572     4178866 :   if (Nval < f) return 0;
     573     4175689 :   p = pr_get_p(P);
     574     4175690 :   e = pr_get_e(P);
     575             :   /* v_P(A) <= max [ e * v_p(A \cap Z), floor[v_p(Nix) / f ] */
     576     4175690 :   vmax = minss(Zval * e, Nval / f);
     577     4175692 :   mul = pr_get_tau(P);
     578     4175689 :   l = lg(mul);
     579     4175689 :   B = cgetg(l,t_MAT);
     580             :   /* B[1] not needed: v_pr(A[1]) = v_pr(A \cap Z) is known already */
     581     4182146 :   gel(B,1) = gen_0; /* dummy */
     582    23268172 :   for (j = 2; j < l; j++)
     583             :   {
     584    20915633 :     GEN x = gel(A,j);
     585    20915633 :     gel(B,j) = y = cgetg(l, t_COL);
     586   227767869 :     for (i = 1; i < l; i++)
     587             :     { /* compute a = (x.t0)_i, A in HNF ==> x[j+1..l-1] = 0 */
     588   208681843 :       a = mulii(gel(x,1), gcoeff(mul,i,1));
     589  1461119192 :       for (k = 2; k <= j; k++) a = addii(a, mulii(gel(x,k), gcoeff(mul,i,k)));
     590             :       /* p | a ? */
     591   208672605 :       gel(y,i) = dvmdii(a,p,&r); if (signe(r)) return 0;
     592             :     }
     593             :   }
     594     2352539 :   vals = cgetg(l, t_VECSMALL);
     595             :   /* vals[1] not needed */
     596    16594504 :   for (j = 2; j < l; j++)
     597             :   {
     598    14241800 :     gel(B,j) = Q_primitive_part(gel(B,j), &cx);
     599    14241779 :     vals[j] = cx? 1 + e * Q_pval(cx, p): 1;
     600             :   }
     601     2352704 :   pk = powiu(p, ceildivuu(vmax, e));
     602     2352662 :   av = avma; y = cgetg(l,t_COL);
     603             :   /* can compute mod p^ceil((vmax-v)/e) */
     604     3901698 :   for (v = 1; v < vmax; v++)
     605             :   { /* we know v_pr(Bj) >= v for all j */
     606     1578954 :     if (e == 1 || (vmax - v) % e == 0) pk = diviiexact(pk, p);
     607     8242349 :     for (j = 2; j < l; j++)
     608             :     {
     609     6693351 :       GEN x = gel(B,j); if (v < vals[j]) continue;
     610    44325152 :       for (i = 1; i < l; i++)
     611             :       {
     612    39843112 :         pari_sp av2 = avma;
     613    39843112 :         a = mulii(gel(x,1), gcoeff(mul,i,1));
     614   515533759 :         for (k = 2; k < l; k++) a = addii(a, mulii(gel(x,k), gcoeff(mul,i,k)));
     615             :         /* a = (x.t_0)_i; p | a ? */
     616    39842202 :         a = dvmdii(a,p,&r); if (signe(r)) return v;
     617    39812010 :         if (lgefint(a) > lgefint(pk)) a = remii(a, pk);
     618    39812011 :         gel(y,i) = gerepileuptoint(av2, a);
     619             :       }
     620     4482040 :       gel(B,j) = y; y = x;
     621     4482040 :       if (gc_needed(av,3))
     622             :       {
     623           0 :         if(DEBUGMEM>1) pari_warn(warnmem,"idealval");
     624           0 :         gerepileall(av,3, &y,&B,&pk);
     625             :       }
     626             :     }
     627             :   }
     628     2322744 :   return v;
     629             : }
     630             : /* true nf, x != 0 integral ideal in HNF, cx t_INT or NULL,
     631             :  * FA integer factorization matrix or NULL. Return partial factorization of
     632             :  * cx * x above primes in FA (complete factorization if !FA)*/
     633             : static GEN
     634      285662 : idealHNF_factor_i(GEN nf, GEN x, GEN cx, GEN FA)
     635             : {
     636      285662 :   const long N = lg(x)-1;
     637             :   long i, j, k, l, v;
     638      285662 :   GEN vN, vZ, vP, vE, vp = idealHNF_Z_factor_i(x, FA, &vN,&vZ);
     639             : 
     640      285688 :   l = lg(vp);
     641      285688 :   i = cx? expi(cx)+1: 1;
     642      285692 :   vP = cgetg((l+i-2)*N+1, t_COL);
     643      285689 :   vE = cgetg((l+i-2)*N+1, t_COL);
     644      713511 :   for (i = k = 1; i < l; i++)
     645             :   {
     646      427822 :     GEN L, p = gel(vp,i);
     647      427822 :     long Nval = vN[i], Zval = vZ[i], vc = cx? Z_pvalrem(cx,p,&cx): 0;
     648      427818 :     if (vc)
     649             :     {
     650       45458 :       L = idealprimedec(nf,p);
     651       45459 :       if (is_pm1(cx)) cx = NULL;
     652             :     }
     653             :     else
     654      382360 :       L = idealprimedec_limit_f(nf,p,Nval);
     655      991168 :     for (j = 1; Nval && j < lg(L); j++) /* !Nval => only cx contributes */
     656             :     {
     657      563357 :       GEN P = gel(L,j);
     658      563357 :       pari_sp av = avma;
     659      563357 :       v = idealHNF_val(x, P, Nval, Zval);
     660      563302 :       set_avma(av);
     661      563307 :       Nval -= v*pr_get_f(P);
     662      563310 :       v += vc * pr_get_e(P); if (!v) continue;
     663      473259 :       gel(vP,k) = P;
     664      473259 :       gel(vE,k) = utoipos(v); k++;
     665             :     }
     666      472298 :     if (vc) for (; j<lg(L); j++)
     667             :     {
     668       44486 :       GEN P = gel(L,j);
     669       44486 :       gel(vP,k) = P;
     670       44486 :       gel(vE,k) = utoipos(vc * pr_get_e(P)); k++;
     671             :     }
     672             :   }
     673      285689 :   if (cx && !FA)
     674             :   { /* complete factorization */
     675       73611 :     GEN f = Z_factor(cx), cP = gel(f,1), cE = gel(f,2);
     676       73611 :     long lc = lg(cP);
     677      160114 :     for (i=1; i<lc; i++)
     678             :     {
     679       86505 :       GEN p = gel(cP,i), L = idealprimedec(nf,p);
     680       86504 :       long vc = itos(gel(cE,i));
     681      189448 :       for (j=1; j<lg(L); j++)
     682             :       {
     683      102945 :         GEN P = gel(L,j);
     684      102945 :         gel(vP,k) = P;
     685      102945 :         gel(vE,k) = utoipos(vc * pr_get_e(P)); k++;
     686             :       }
     687             :     }
     688             :   }
     689      285687 :   setlg(vP, k);
     690      285689 :   setlg(vE, k); return mkmat2(vP, vE);
     691             : }
     692             : /* true nf, x integral ideal */
     693             : static GEN
     694      239915 : idealHNF_factor(GEN nf, GEN x, ulong lim)
     695             : {
     696      239915 :   GEN cx, F = NULL;
     697      239915 :   if (lim)
     698             :   {
     699             :     GEN P, E;
     700             :     long i;
     701             :     /* strict useless because of prime table */
     702          77 :     F = absZ_factor_limit(gcoeff(x,1,1), lim);
     703          77 :     P = gel(F,1);
     704          77 :     E = gel(F,2);
     705             :     /* filter out entries > lim */
     706         126 :     for (i = lg(P)-1; i; i--)
     707         126 :       if (cmpiu(gel(P,i), lim) <= 0) break;
     708          77 :     setlg(P, i+1);
     709          77 :     setlg(E, i+1);
     710             :   }
     711      239915 :   x = Q_primitive_part(x, &cx);
     712      239893 :   return idealHNF_factor_i(nf, x, cx, F);
     713             : }
     714             : /* c * vector(#L,i,L[i].e), assume results fit in ulong */
     715             : static GEN
     716       28171 : prV_e_muls(GEN L, long c)
     717             : {
     718       28171 :   long j, l = lg(L);
     719       28171 :   GEN z = cgetg(l, t_COL);
     720       58000 :   for (j = 1; j < l; j++) gel(z,j) = stoi(c * pr_get_e(gel(L,j)));
     721       28154 :   return z;
     722             : }
     723             : /* true nf, y in Q */
     724             : static GEN
     725       28175 : Q_nffactor(GEN nf, GEN y, ulong lim)
     726             : {
     727             :   GEN f, P, E;
     728             :   long l, i;
     729       28175 :   if (typ(y) == t_INT)
     730             :   {
     731       28147 :     if (!signe(y)) pari_err_DOMAIN("idealfactor", "ideal", "=",gen_0,y);
     732       28133 :     if (is_pm1(y)) return trivial_fact();
     733             :   }
     734       17739 :   y = Q_abs_shallow(y);
     735       17735 :   if (!lim) f = Q_factor(y);
     736             :   else
     737             :   {
     738         161 :     f = Q_factor_limit(y, lim);
     739         161 :     P = gel(f,1);
     740         161 :     E = gel(f,2);
     741         231 :     for (i = lg(P)-1; i > 0; i--)
     742         210 :       if (abscmpiu(gel(P,i), lim) < 0) break;
     743         161 :     setlg(P,i+1); setlg(E,i+1);
     744             :   }
     745       17731 :   P = gel(f,1); l = lg(P); if (l == 1) return f;
     746       17710 :   E = gel(f,2);
     747       45921 :   for (i = 1; i < l; i++)
     748             :   {
     749       28215 :     gel(P,i) = idealprimedec(nf, gel(P,i));
     750       28170 :     gel(E,i) = prV_e_muls(gel(P,i), itos(gel(E,i)));
     751             :   }
     752       17706 :   P = shallowconcat1(P); gel(f,1) = P; settyp(P, t_COL);
     753       17725 :   E = shallowconcat1(E); gel(f,2) = E; return f;
     754             : }
     755             : 
     756             : GEN
     757       25508 : idealfactor_partial(GEN nf, GEN x, GEN L)
     758             : {
     759       25508 :   pari_sp av = avma;
     760             :   long i, j, l;
     761             :   GEN P, E;
     762       25508 :   if (!L) return idealfactor(nf, x);
     763       24668 :   if (typ(L) == t_INT) return idealfactor_limit(nf, x, itou(L));
     764       24640 :   l = lg(L); if (l == 1) return trivial_fact();
     765       23849 :   P = cgetg(l, t_VEC);
     766       89936 :   for (i = 1; i < l; i++)
     767             :   {
     768       66087 :     GEN p = gel(L,i);
     769       66087 :     gel(P,i) = typ(p) == t_INT? idealprimedec(nf, p): mkvec(p);
     770             :   }
     771       23849 :   P = shallowconcat1(P); settyp(P, t_COL);
     772       23849 :   P = gen_sort_uniq(P, (void*)&cmp_prime_ideal, &cmp_nodata);
     773       23849 :   E = cgetg_copy(P, &l);
     774      114653 :   for (i = j = 1; i < l; i++)
     775             :   {
     776       90804 :     long v = idealval(nf, x, gel(P,i));
     777       90804 :     if (v) { gel(P,j) = gel(P,i); gel(E,j) = stoi(v); j++; }
     778             :   }
     779       23849 :   setlg(P,j);
     780       23849 :   setlg(E,j); return gerepilecopy(av, mkmat2(P, E));
     781             : }
     782             : GEN
     783      268220 : idealfactor_limit(GEN nf, GEN x, ulong lim)
     784             : {
     785      268220 :   pari_sp av = avma;
     786             :   GEN fa, y;
     787      268220 :   long tx = idealtyp(&x, NULL);
     788             : 
     789      268196 :   if (tx == id_PRIME)
     790             :   {
     791         119 :     if (lim && abscmpiu(pr_get_p(x), lim) >= 0) return trivial_fact();
     792         112 :     retmkmat2(mkcolcopy(x), mkcol(gen_1));
     793             :   }
     794      268077 :   nf = checknf(nf);
     795      268074 :   if (tx == id_PRINCIPAL)
     796             :   {
     797       29353 :     y = nf_to_scalar_or_basis(nf, x);
     798       29353 :     if (typ(y) != t_COL) return gerepilecopy(av, Q_nffactor(nf, y, lim));
     799             :   }
     800      239897 :   y = idealnumden(nf, x);
     801      239902 :   fa = idealHNF_factor(nf, gel(y,1), lim);
     802      239899 :   if (!isint1(gel(y,2)))
     803          14 :     fa = famat_div_shallow(fa, idealHNF_factor(nf, gel(y,2), lim));
     804      239898 :   fa = gerepilecopy(av, fa);
     805      239907 :   return sort_factor(fa, (void*)&cmp_prime_ideal, &cmp_nodata);
     806             : }
     807             : GEN
     808      267828 : idealfactor(GEN nf, GEN x) { return idealfactor_limit(nf, x, 0); }
     809             : GEN
     810         182 : gpidealfactor(GEN nf, GEN x, GEN lim)
     811             : {
     812         182 :   ulong L = 0;
     813         182 :   if (lim)
     814             :   {
     815          70 :     if (typ(lim) != t_INT || signe(lim) < 0) pari_err_FLAG("idealfactor");
     816          70 :     L = itou(lim);
     817             :   }
     818         182 :   return idealfactor_limit(nf, x, L);
     819             : }
     820             : 
     821             : static GEN
     822        7789 : ramified_root(GEN nf, GEN R, GEN A, long n)
     823             : {
     824        7789 :   GEN v, P = gel(idealfactor(nf, R), 1);
     825        7789 :   long i, l = lg(P);
     826        7789 :   v = cgetg(l, t_VECSMALL);
     827        8440 :   for (i = 1; i < l; i++)
     828             :   {
     829         658 :     long w = idealval(nf, A, gel(P,i));
     830         658 :     if (w % n) return NULL;
     831         651 :     v[i] = w / n;
     832             :   }
     833        7782 :   return idealfactorback(nf, P, v, 0);
     834             : }
     835             : static int
     836           7 : ramified_root_simple(GEN nf, long n, GEN P, GEN v)
     837             : {
     838           7 :   long i, l = lg(v);
     839          21 :   for (i = 1; i < l; i++)
     840             :   {
     841          14 :     long w = v[i] % n;
     842          14 :     if (w)
     843             :     {
     844           7 :       GEN vpr = idealprimedec(nf, gel(P,i));
     845           7 :       long lpr = lg(vpr), j;
     846          14 :       for (j = 1; j < lpr; j++)
     847             :       {
     848           7 :         long e = pr_get_e(gel(vpr,j));
     849           7 :         if ((e * w) % n) return 0;
     850             :       }
     851             :     }
     852             :   }
     853           7 :   return 1;
     854             : }
     855             : /* true nf, n > 1, A a non-zero integral ideal; check whether A is the n-th
     856             :  * power of an ideal and set *pB to its n-th root if so */
     857             : static long
     858        7796 : idealsqrtn_int(GEN nf, GEN A, long n, GEN *pB)
     859             : {
     860             :   GEN C, root;
     861             :   long i, l;
     862             : 
     863        7796 :   if (typ(A) == t_MAT && ZM_isscalar(A, NULL)) A = gcoeff(A,1,1);
     864        7796 :   if (typ(A) == t_INT) /* > 0 */
     865             :   {
     866        5571 :     GEN P = nf_get_ramified_primes(nf), v, q;
     867        5571 :     l = lg(P); v = cgetg(l, t_VECSMALL);
     868       24995 :     for (i = 1; i < l; i++) v[i] = Z_pvalrem(A, gel(P,i), &A);
     869        5571 :     C = gen_1;
     870        5571 :     if (!isint1(A) && !Z_ispowerall(A, n, pB? &C: NULL)) return 0;
     871        5571 :     if (!pB) return ramified_root_simple(nf, n, P, v);
     872        5564 :     q = factorback2(P, v);
     873        5564 :     root = ramified_root(nf, q, q, n);
     874        5564 :     if (!root) return 0;
     875        5564 :     if (!equali1(C)) root = isint1(root)? C: ZM_Z_mul(root, C);
     876        5564 :     *pB = root; return 1;
     877             :   }
     878             :   /* compute valuations at ramified primes */
     879        2225 :   root = ramified_root(nf, idealadd(nf, nf_get_diff(nf), A), A, n);
     880        2225 :   if (!root) return 0;
     881             :   /* remove ramified primes */
     882        2218 :   if (isint1(root))
     883        1868 :     root = matid(nf_get_degree(nf));
     884             :   else
     885         350 :     A = idealdivexact(nf, A, idealpows(nf,root,n));
     886        2218 :   A = Q_primitive_part(A, &C);
     887        2218 :   if (C)
     888             :   {
     889           7 :     if (!Z_ispowerall(C,n,&C)) return 0;
     890           0 :     if (pB) root = ZM_Z_mul(root, C);
     891             :   }
     892             : 
     893             :   /* compute final n-th root, at most degree(nf)-1 iterations */
     894        2211 :   for (i = 0;; i++)
     895        2078 :   {
     896        4289 :     GEN J, b, a = gcoeff(A,1,1); /* A \cap Z */
     897        4289 :     if (is_pm1(a)) break;
     898        2106 :     if (!Z_ispowerall(a,n,&b)) return 0;
     899        2078 :     J = idealadd(nf, b, A);
     900        2078 :     A = idealdivexact(nf, idealpows(nf,J,n), A);
     901             :     /* div and not divexact here */
     902        2078 :     if (pB) root = odd(i)? idealdiv(nf, root, J): idealmul(nf, root, J);
     903             :   }
     904        2183 :   if (pB) *pB = root;
     905        2183 :   return 1;
     906             : }
     907             : 
     908             : /* A is assumed to be the n-th power of an ideal in nf
     909             :  returns its n-th root. */
     910             : long
     911        3926 : idealispower(GEN nf, GEN A, long n, GEN *pB)
     912             : {
     913        3926 :   pari_sp av = avma;
     914             :   GEN v, N, D;
     915        3926 :   nf = checknf(nf);
     916        3926 :   if (n <= 0) pari_err_DOMAIN("idealispower", "n", "<=", gen_0, stoi(n));
     917        3926 :   if (n == 1) { if (pB) *pB = idealhnf(nf,A); return 1; }
     918        3919 :   v = idealnumden(nf,A);
     919        3919 :   if (gequal0(gel(v,1))) { set_avma(av); if (pB) *pB = cgetg(1,t_MAT); return 1; }
     920        3919 :   if (!idealsqrtn_int(nf, gel(v,1), n, pB? &N: NULL)) return 0;
     921        3877 :   if (!idealsqrtn_int(nf, gel(v,2), n, pB? &D: NULL)) return 0;
     922        3877 :   if (pB) *pB = gerepileupto(av, idealdiv(nf,N,D)); else set_avma(av);
     923        3877 :   return 1;
     924             : }
     925             : 
     926             : /* x t_INT or integral nonzero ideal in HNF */
     927             : static GEN
     928       98322 : idealredmodpower_i(GEN nf, GEN x, ulong k, ulong B)
     929             : {
     930             :   GEN cx, y, U, N, F, Q;
     931       98322 :   if (typ(x) == t_INT)
     932             :   {
     933       52066 :     if (!signe(x) || is_pm1(x)) return gen_1;
     934        2191 :     F = Z_factor_limit(x, B);
     935        2191 :     gel(F,2) = gdiventgs(gel(F,2), k);
     936        2191 :     return ginv(factorback(F));
     937             :   }
     938       46256 :   N = gcoeff(x,1,1); if (is_pm1(N)) return gen_1;
     939       45778 :   F = absZ_factor_limit_strict(N, B, &U);
     940       45777 :   if (U)
     941             :   {
     942         153 :     GEN M = powii(gel(U,1), gel(U,2));
     943         153 :     y = hnfmodid(x, M); /* coprime part to B! */
     944         153 :     if (!idealispower(nf, y, k, &U)) U = NULL;
     945         153 :     x = hnfmodid(x, diviiexact(N, M));
     946             :   }
     947             :   /* x = B-smooth part of initial x */
     948       45777 :   x = Q_primitive_part(x, &cx);
     949       45775 :   F = idealHNF_factor_i(nf, x, cx, F);
     950       45778 :   gel(F,2) = gdiventgs(gel(F,2), k);
     951       45778 :   Q = idealfactorback(nf, gel(F,1), gel(F,2), 0);
     952       45778 :   if (U) Q = idealmul(nf,Q,U);
     953       45778 :   if (typ(Q) == t_INT) return Q;
     954       13787 :   y = idealred_elt(nf, idealHNF_inv_Z(nf, Q));
     955       13786 :   return gdiv(y, gcoeff(Q,1,1));
     956             : }
     957             : GEN
     958       49167 : idealredmodpower(GEN nf, GEN x, ulong n, ulong B)
     959             : {
     960       49167 :   pari_sp av = avma;
     961             :   GEN a, b;
     962       49167 :   nf = checknf(nf);
     963       49167 :   if (!n) pari_err_DOMAIN("idealredmodpower","n", "=", gen_0, gen_0);
     964       49167 :   x = idealnumden(nf, x);
     965       49168 :   a = gel(x,1);
     966       49168 :   if (isintzero(a)) { set_avma(av); return gen_1; }
     967       49161 :   a = idealredmodpower_i(nf, gel(x,1), n, B);
     968       49161 :   b = idealredmodpower_i(nf, gel(x,2), n, B);
     969       49161 :   if (!isint1(b)) a = nf_to_scalar_or_basis(nf, nfdiv(nf, a, b));
     970       49161 :   return gerepilecopy(av, a);
     971             : }
     972             : 
     973             : /* P prime ideal in idealprimedec format. Return valuation(A) at P */
     974             : long
     975     9397614 : idealval(GEN nf, GEN A, GEN P)
     976             : {
     977     9397614 :   pari_sp av = avma;
     978             :   GEN p, cA;
     979     9397614 :   long vcA, v, Zval, tx = idealtyp(&A, NULL);
     980             : 
     981     9397614 :   if (tx == id_PRINCIPAL) return nfval(nf,A,P);
     982     9290388 :   checkprid(P);
     983     9290626 :   if (tx == id_PRIME) return pr_equal(P, A)? 1: 0;
     984             :   /* id_MAT */
     985     9290598 :   nf = checknf(nf);
     986     9290791 :   A = Q_primitive_part(A, &cA);
     987     9290888 :   p = pr_get_p(P);
     988     9290914 :   vcA = cA? Q_pval(cA,p): 0;
     989     9290921 :   if (pr_is_inert(P)) return gc_long(av,vcA);
     990     8892893 :   Zval = Z_pval(gcoeff(A,1,1), p);
     991     8892915 :   if (!Zval) v = 0;
     992             :   else
     993             :   {
     994     3615410 :     long Nval = idealHNF_norm_pval(A, p, Zval);
     995     3615512 :     v = idealHNF_val(A, P, Nval, Zval);
     996             :   }
     997     8892824 :   return gc_long(av, vcA? v + vcA*pr_get_e(P): v);
     998             : }
     999             : GEN
    1000        7119 : gpidealval(GEN nf, GEN ix, GEN P)
    1001             : {
    1002        7119 :   long v = idealval(nf,ix,P);
    1003        7105 :   return v == LONG_MAX? mkoo(): stoi(v);
    1004             : }
    1005             : 
    1006             : /* gcd and generalized Bezout */
    1007             : 
    1008             : GEN
    1009       81609 : idealadd(GEN nf, GEN x, GEN y)
    1010             : {
    1011       81609 :   pari_sp av = avma;
    1012             :   long tx, ty;
    1013             :   GEN z, a, dx, dy, dz;
    1014             : 
    1015       81609 :   tx = idealtyp(&x, NULL);
    1016       81609 :   ty = idealtyp(&y, NULL); nf = checknf(nf);
    1017       81609 :   if (tx != id_MAT) x = idealhnf_shallow(nf,x);
    1018       81609 :   if (ty != id_MAT) y = idealhnf_shallow(nf,y);
    1019       81609 :   if (lg(x) == 1) return gerepilecopy(av,y);
    1020       80615 :   if (lg(y) == 1) return gerepilecopy(av,x); /* check for 0 ideal */
    1021       80160 :   dx = Q_denom(x);
    1022       80160 :   dy = Q_denom(y); dz = lcmii(dx,dy);
    1023       80160 :   if (is_pm1(dz)) dz = NULL; else {
    1024        5887 :     x = Q_muli_to_int(x, dz);
    1025        5887 :     y = Q_muli_to_int(y, dz);
    1026             :   }
    1027       80160 :   a = gcdii(gcoeff(x,1,1), gcoeff(y,1,1));
    1028       80160 :   if (is_pm1(a))
    1029             :   {
    1030       22007 :     long N = lg(x)-1;
    1031       22007 :     if (!dz) { set_avma(av); return matid(N); }
    1032        1043 :     return gerepileupto(av, scalarmat(ginv(dz), N));
    1033             :   }
    1034       58153 :   z = ZM_hnfmodid(shallowconcat(x,y), a);
    1035       58153 :   if (dz) z = RgM_Rg_div(z,dz);
    1036       58153 :   return gerepileupto(av,z);
    1037             : }
    1038             : 
    1039             : static GEN
    1040          28 : trivial_merge(GEN x)
    1041          28 : { return (lg(x) == 1 || !is_pm1(gcoeff(x,1,1)))? NULL: gen_1; }
    1042             : /* true nf */
    1043             : static GEN
    1044      731107 : _idealaddtoone(GEN nf, GEN x, GEN y, long red)
    1045             : {
    1046             :   GEN a;
    1047      731107 :   long tx = idealtyp(&x, NULL);
    1048      731092 :   long ty = idealtyp(&y, NULL);
    1049             :   long ea;
    1050      731088 :   if (tx != id_MAT) x = idealhnf_shallow(nf, x);
    1051      731105 :   if (ty != id_MAT) y = idealhnf_shallow(nf, y);
    1052      731105 :   if (lg(x) == 1)
    1053          14 :     a = trivial_merge(y);
    1054      731091 :   else if (lg(y) == 1)
    1055          14 :     a = trivial_merge(x);
    1056             :   else
    1057      731077 :     a = hnfmerge_get_1(x, y);
    1058      731076 :   if (!a) pari_err_COPRIME("idealaddtoone",x,y);
    1059      731060 :   if (red && (ea = gexpo(a)) > 10)
    1060             :   {
    1061        4557 :     GEN b = (typ(a) == t_COL)? a: scalarcol_shallow(a, nf_get_degree(nf));
    1062        4557 :     b = ZC_reducemodlll(b, idealHNF_mul(nf,x,y));
    1063        4557 :     if (gexpo(b) < ea) a = b;
    1064             :   }
    1065      731060 :   return a;
    1066             : }
    1067             : /* true nf */
    1068             : GEN
    1069       17605 : idealaddtoone_i(GEN nf, GEN x, GEN y)
    1070       17605 : { return _idealaddtoone(nf, x, y, 1); }
    1071             : /* true nf */
    1072             : GEN
    1073      713504 : idealaddtoone_raw(GEN nf, GEN x, GEN y)
    1074      713504 : { return _idealaddtoone(nf, x, y, 0); }
    1075             : 
    1076             : GEN
    1077          98 : idealaddtoone(GEN nf, GEN x, GEN y)
    1078             : {
    1079          98 :   GEN z = cgetg(3,t_VEC), a;
    1080          98 :   pari_sp av = avma;
    1081          98 :   nf = checknf(nf);
    1082          98 :   a = gerepileupto(av, idealaddtoone_i(nf,x,y));
    1083          84 :   gel(z,1) = a;
    1084          84 :   gel(z,2) = typ(a) == t_COL? Z_ZC_sub(gen_1,a): subui(1,a);
    1085          84 :   return z;
    1086             : }
    1087             : 
    1088             : /* assume elements of list are integral ideals */
    1089             : GEN
    1090          35 : idealaddmultoone(GEN nf, GEN list)
    1091             : {
    1092          35 :   pari_sp av = avma;
    1093          35 :   long N, i, l, nz, tx = typ(list);
    1094             :   GEN H, U, perm, L;
    1095             : 
    1096          35 :   nf = checknf(nf); N = nf_get_degree(nf);
    1097          35 :   if (!is_vec_t(tx)) pari_err_TYPE("idealaddmultoone",list);
    1098          35 :   l = lg(list);
    1099          35 :   L = cgetg(l, t_VEC);
    1100          35 :   if (l == 1)
    1101           0 :     pari_err_DOMAIN("idealaddmultoone", "sum(ideals)", "!=", gen_1, L);
    1102          35 :   nz = 0; /* number of nonzero ideals in L */
    1103          98 :   for (i=1; i<l; i++)
    1104             :   {
    1105          70 :     GEN I = gel(list,i);
    1106          70 :     if (typ(I) != t_MAT) I = idealhnf_shallow(nf,I);
    1107          70 :     if (lg(I) != 1)
    1108             :     {
    1109          42 :       nz++; RgM_check_ZM(I,"idealaddmultoone");
    1110          35 :       if (lgcols(I) != N+1) pari_err_TYPE("idealaddmultoone [not an ideal]", I);
    1111             :     }
    1112          63 :     gel(L,i) = I;
    1113             :   }
    1114          28 :   H = ZM_hnfperm(shallowconcat1(L), &U, &perm);
    1115          28 :   if (lg(H) == 1 || !equali1(gcoeff(H,1,1)))
    1116           7 :     pari_err_DOMAIN("idealaddmultoone", "sum(ideals)", "!=", gen_1, L);
    1117          49 :   for (i=1; i<=N; i++)
    1118          49 :     if (perm[i] == 1) break;
    1119          21 :   U = gel(U,(nz-1)*N + i); /* (L[1]|...|L[nz]) U = 1 */
    1120          21 :   nz = 0;
    1121          63 :   for (i=1; i<l; i++)
    1122             :   {
    1123          42 :     GEN c = gel(L,i);
    1124          42 :     if (lg(c) == 1)
    1125          14 :       c = gen_0;
    1126             :     else {
    1127          28 :       c = ZM_ZC_mul(c, vecslice(U, nz*N + 1, (nz+1)*N));
    1128          28 :       nz++;
    1129             :     }
    1130          42 :     gel(L,i) = c;
    1131             :   }
    1132          21 :   return gerepilecopy(av, L);
    1133             : }
    1134             : 
    1135             : /* multiplication */
    1136             : 
    1137             : /* x integral ideal (without archimedean component) in HNF form
    1138             :  * y = [a,alpha] corresponds to the integral ideal aZ_K+alpha Z_K, a in Z,
    1139             :  * alpha a ZV or a ZM (multiplication table). Multiply them */
    1140             : static GEN
    1141      922927 : idealHNF_mul_two(GEN nf, GEN x, GEN y)
    1142             : {
    1143      922927 :   GEN m, a = gel(y,1), alpha = gel(y,2);
    1144             :   long i, N;
    1145             : 
    1146      922927 :   if (typ(alpha) != t_MAT)
    1147             :   {
    1148      585506 :     alpha = zk_scalar_or_multable(nf, alpha);
    1149      585535 :     if (typ(alpha) == t_INT) /* e.g. y inert ? 0 should not (but may) occur */
    1150       14153 :       return signe(a)? ZM_Z_mul(x, gcdii(a, alpha)): cgetg(1,t_MAT);
    1151             :   }
    1152      908803 :   N = lg(x)-1; m = cgetg((N<<1)+1,t_MAT);
    1153     3637885 :   for (i=1; i<=N; i++) gel(m,i)   = ZM_ZC_mul(alpha,gel(x,i));
    1154     3636565 :   for (i=1; i<=N; i++) gel(m,i+N) = ZC_Z_mul(gel(x,i), a);
    1155      907844 :   return ZM_hnfmodid(m, mulii(a, gcoeff(x,1,1)));
    1156             : }
    1157             : 
    1158             : /* Assume x and y are integral in HNF form [NOT extended]. Not memory clean.
    1159             :  * HACK: ideal in y can be of the form [a,b], a in Z, b in Z_K */
    1160             : GEN
    1161      469905 : idealHNF_mul(GEN nf, GEN x, GEN y)
    1162             : {
    1163             :   GEN z;
    1164      469905 :   if (typ(y) == t_VEC)
    1165      298713 :     z = idealHNF_mul_two(nf,x,y);
    1166             :   else
    1167             :   { /* reduce one ideal to two-elt form. The smallest */
    1168      171192 :     GEN xZ = gcoeff(x,1,1), yZ = gcoeff(y,1,1);
    1169      171192 :     if (cmpii(xZ, yZ) < 0)
    1170             :     {
    1171       35891 :       if (is_pm1(xZ)) return gcopy(y);
    1172       20312 :       z = idealHNF_mul_two(nf, y, mat_ideal_two_elt(nf,x));
    1173             :     }
    1174             :     else
    1175             :     {
    1176      135302 :       if (is_pm1(yZ)) return gcopy(x);
    1177       36185 :       z = idealHNF_mul_two(nf, x, mat_ideal_two_elt(nf,y));
    1178             :     }
    1179             :   }
    1180      355229 :   return z;
    1181             : }
    1182             : 
    1183             : /* operations on elements in factored form */
    1184             : 
    1185             : GEN
    1186      200580 : famat_mul_shallow(GEN f, GEN g)
    1187             : {
    1188      200580 :   if (typ(f) != t_MAT) f = to_famat_shallow(f,gen_1);
    1189      200580 :   if (typ(g) != t_MAT) g = to_famat_shallow(g,gen_1);
    1190      200580 :   if (lgcols(f) == 1) return g;
    1191      148195 :   if (lgcols(g) == 1) return f;
    1192      146270 :   return mkmat2(shallowconcat(gel(f,1), gel(g,1)),
    1193      146270 :                 shallowconcat(gel(f,2), gel(g,2)));
    1194             : }
    1195             : GEN
    1196       88306 : famat_mulpow_shallow(GEN f, GEN g, GEN e)
    1197             : {
    1198       88306 :   if (!signe(e)) return f;
    1199       54600 :   return famat_mul_shallow(f, famat_pow_shallow(g, e));
    1200             : }
    1201             : 
    1202             : GEN
    1203      118549 : famat_mulpows_shallow(GEN f, GEN g, long e)
    1204             : {
    1205      118549 :   if (e==0) return f;
    1206       94754 :   return famat_mul_shallow(f, famat_pows_shallow(g, e));
    1207             : }
    1208             : 
    1209             : GEN
    1210       10304 : famat_div_shallow(GEN f, GEN g)
    1211       10304 : { return famat_mul_shallow(f, famat_inv_shallow(g)); }
    1212             : 
    1213             : GEN
    1214      376349 : Z_to_famat(GEN x)
    1215             : {
    1216             :   long k;
    1217      376349 :   if (equali1(x)) return trivial_fact();
    1218      192530 :   k = Z_isanypower(x, &x) ;
    1219      192530 :   return to_famat_shallow(x, k? utoi(k): gen_1);
    1220             : }
    1221             : GEN
    1222      197139 : Q_to_famat(GEN x)
    1223             : {
    1224      197139 :   if (typ(x) == t_INT) return Z_to_famat(x);
    1225      179210 :   return famat_div(Z_to_famat(gel(x,1)), Z_to_famat(gel(x,2)));
    1226             : }
    1227             : GEN
    1228           0 : to_famat(GEN x, GEN y) { retmkmat2(mkcolcopy(x), mkcolcopy(y)); }
    1229             : GEN
    1230     2688534 : to_famat_shallow(GEN x, GEN y) { return mkmat2(mkcol(x), mkcol(y)); }
    1231             : 
    1232             : /* concat the single elt x; not gconcat since x may be a t_COL */
    1233             : static GEN
    1234      151933 : append(GEN v, GEN x)
    1235             : {
    1236      151933 :   long i, l = lg(v);
    1237      151933 :   GEN w = cgetg(l+1, typ(v));
    1238      653861 :   for (i=1; i<l; i++) gel(w,i) = gcopy(gel(v,i));
    1239      151933 :   gel(w,i) = gcopy(x); return w;
    1240             : }
    1241             : /* add x^1 to famat f */
    1242             : static GEN
    1243      158601 : famat_add(GEN f, GEN x)
    1244             : {
    1245      158601 :   GEN h = cgetg(3,t_MAT);
    1246      158601 :   if (lgcols(f) == 1)
    1247             :   {
    1248       13209 :     gel(h,1) = mkcolcopy(x);
    1249       13208 :     gel(h,2) = mkcol(gen_1);
    1250             :   }
    1251             :   else
    1252             :   {
    1253      145392 :     gel(h,1) = append(gel(f,1), x);
    1254      145392 :     gel(h,2) = gconcat(gel(f,2), gen_1);
    1255             :   }
    1256      158600 :   return h;
    1257             : }
    1258             : /* add x^-1 to famat f */
    1259             : static GEN
    1260       20931 : famat_sub(GEN f, GEN x)
    1261             : {
    1262       20931 :   GEN h = cgetg(3,t_MAT);
    1263       20931 :   if (lgcols(f) == 1)
    1264             :   {
    1265       14390 :     gel(h,1) = mkcolcopy(x);
    1266       14390 :     gel(h,2) = mkcol(gen_m1);
    1267             :   }
    1268             :   else
    1269             :   {
    1270        6541 :     gel(h,1) = append(gel(f,1), x);
    1271        6541 :     gel(h,2) = gconcat(gel(f,2), gen_m1);
    1272             :   }
    1273       20931 :   return h;
    1274             : }
    1275             : 
    1276             : GEN
    1277      447415 : famat_mul(GEN f, GEN g)
    1278             : {
    1279             :   GEN h;
    1280      447415 :   if (typ(g) != t_MAT) {
    1281       30501 :     if (typ(f) == t_MAT) return famat_add(f, g);
    1282           0 :     h = cgetg(3, t_MAT);
    1283           0 :     gel(h,1) = mkcol2(gcopy(f), gcopy(g));
    1284           0 :     gel(h,2) = mkcol2(gen_1, gen_1);
    1285             :   }
    1286      416914 :   if (typ(f) != t_MAT) return famat_add(g, f);
    1287      288814 :   if (lgcols(f) == 1) return gcopy(g);
    1288      265501 :   if (lgcols(g) == 1) return gcopy(f);
    1289      259517 :   h = cgetg(3,t_MAT);
    1290      259517 :   gel(h,1) = gconcat(gel(f,1), gel(g,1));
    1291      259517 :   gel(h,2) = gconcat(gel(f,2), gel(g,2));
    1292      259517 :   return h;
    1293             : }
    1294             : 
    1295             : GEN
    1296      200148 : famat_div(GEN f, GEN g)
    1297             : {
    1298             :   GEN h;
    1299      200148 :   if (typ(g) != t_MAT) {
    1300       20889 :     if (typ(f) == t_MAT) return famat_sub(f, g);
    1301           0 :     h = cgetg(3, t_MAT);
    1302           0 :     gel(h,1) = mkcol2(gcopy(f), gcopy(g));
    1303           0 :     gel(h,2) = mkcol2(gen_1, gen_m1);
    1304             :   }
    1305      179259 :   if (typ(f) != t_MAT) return famat_sub(g, f);
    1306      179217 :   if (lgcols(f) == 1) return famat_inv(g);
    1307         261 :   if (lgcols(g) == 1) return gcopy(f);
    1308         261 :   h = cgetg(3,t_MAT);
    1309         261 :   gel(h,1) = gconcat(gel(f,1), gel(g,1));
    1310         261 :   gel(h,2) = gconcat(gel(f,2), gneg(gel(g,2)));
    1311         261 :   return h;
    1312             : }
    1313             : 
    1314             : GEN
    1315       22917 : famat_sqr(GEN f)
    1316             : {
    1317             :   GEN h;
    1318       22917 :   if (typ(f) != t_MAT) return to_famat(f,gen_2);
    1319       22917 :   if (lgcols(f) == 1) return gcopy(f);
    1320       13127 :   h = cgetg(3,t_MAT);
    1321       13127 :   gel(h,1) = gcopy(gel(f,1));
    1322       13127 :   gel(h,2) = gmul2n(gel(f,2),1);
    1323       13127 :   return h;
    1324             : }
    1325             : 
    1326             : GEN
    1327       26969 : famat_inv_shallow(GEN f)
    1328             : {
    1329       26969 :   if (typ(f) != t_MAT) return to_famat_shallow(f,gen_m1);
    1330       10444 :   if (lgcols(f) == 1) return f;
    1331       10444 :   return mkmat2(gel(f,1), ZC_neg(gel(f,2)));
    1332             : }
    1333             : GEN
    1334      199362 : famat_inv(GEN f)
    1335             : {
    1336      199362 :   if (typ(f) != t_MAT) return to_famat(f,gen_m1);
    1337      199362 :   if (lgcols(f) == 1) return gcopy(f);
    1338      180817 :   retmkmat2(gcopy(gel(f,1)), ZC_neg(gel(f,2)));
    1339             : }
    1340             : GEN
    1341       60642 : famat_pow(GEN f, GEN n)
    1342             : {
    1343       60642 :   if (typ(f) != t_MAT) return to_famat(f,n);
    1344       60642 :   if (lgcols(f) == 1) return gcopy(f);
    1345       60642 :   retmkmat2(gcopy(gel(f,1)), ZC_Z_mul(gel(f,2),n));
    1346             : }
    1347             : GEN
    1348       62033 : famat_pow_shallow(GEN f, GEN n)
    1349             : {
    1350       62033 :   if (is_pm1(n)) return signe(n) > 0? f: famat_inv_shallow(f);
    1351       35675 :   if (typ(f) != t_MAT) return to_famat_shallow(f,n);
    1352        7988 :   if (lgcols(f) == 1) return f;
    1353        6073 :   return mkmat2(gel(f,1), ZC_Z_mul(gel(f,2),n));
    1354             : }
    1355             : 
    1356             : GEN
    1357      123139 : famat_pows_shallow(GEN f, long n)
    1358             : {
    1359      123139 :   if (n==1) return f;
    1360       34995 :   if (n==-1) return famat_inv_shallow(f);
    1361       34988 :   if (typ(f) != t_MAT) return to_famat_shallow(f, stoi(n));
    1362       26721 :   if (lgcols(f) == 1) return f;
    1363       26721 :   return mkmat2(gel(f,1), ZC_z_mul(gel(f,2),n));
    1364             : }
    1365             : 
    1366             : GEN
    1367           0 : famat_Z_gcd(GEN M, GEN n)
    1368             : {
    1369           0 :   pari_sp av=avma;
    1370           0 :   long i, j, l=lgcols(M);
    1371           0 :   GEN F=cgetg(3,t_MAT);
    1372           0 :   gel(F,1)=cgetg(l,t_COL);
    1373           0 :   gel(F,2)=cgetg(l,t_COL);
    1374           0 :   for (i=1, j=1; i<l; i++)
    1375             :   {
    1376           0 :     GEN p = gcoeff(M,i,1);
    1377           0 :     GEN e = gminsg(Z_pval(n,p),gcoeff(M,i,2));
    1378           0 :     if (signe(e))
    1379             :     {
    1380           0 :       gcoeff(F,j,1)=p;
    1381           0 :       gcoeff(F,j,2)=e;
    1382           0 :       j++;
    1383             :     }
    1384             :   }
    1385           0 :   setlg(gel(F,1),j); setlg(gel(F,2),j);
    1386           0 :   return gerepilecopy(av,F);
    1387             : }
    1388             : 
    1389             : /* x assumed to be a t_MATs (factorization matrix), or compatible with
    1390             :  * the element_* functions. */
    1391             : static GEN
    1392       33865 : ext_sqr(GEN nf, GEN x)
    1393       33865 : { return (typ(x)==t_MAT)? famat_sqr(x): nfsqr(nf, x); }
    1394             : static GEN
    1395       60749 : ext_mul(GEN nf, GEN x, GEN y)
    1396       60749 : { return (typ(x)==t_MAT)? famat_mul(x,y): nfmul(nf, x, y); }
    1397             : static GEN
    1398       20406 : ext_inv(GEN nf, GEN x)
    1399       20406 : { return (typ(x)==t_MAT)? famat_inv(x): nfinv(nf, x); }
    1400             : static GEN
    1401           0 : ext_pow(GEN nf, GEN x, GEN n)
    1402           0 : { return (typ(x)==t_MAT)? famat_pow(x,n): nfpow(nf, x, n); }
    1403             : 
    1404             : GEN
    1405           0 : famat_to_nf(GEN nf, GEN f)
    1406             : {
    1407             :   GEN t, x, e;
    1408             :   long i;
    1409           0 :   if (lgcols(f) == 1) return gen_1;
    1410           0 :   x = gel(f,1);
    1411           0 :   e = gel(f,2);
    1412           0 :   t = nfpow(nf, gel(x,1), gel(e,1));
    1413           0 :   for (i=lg(x)-1; i>1; i--)
    1414           0 :     t = nfmul(nf, t, nfpow(nf, gel(x,i), gel(e,i)));
    1415           0 :   return t;
    1416             : }
    1417             : 
    1418             : GEN
    1419           0 : famat_idealfactor(GEN nf, GEN x)
    1420             : {
    1421             :   long i, l;
    1422           0 :   GEN g = gel(x,1), e = gel(x,2), h = cgetg_copy(g, &l);
    1423           0 :   for (i = 1; i < l; i++) gel(h,i) = idealfactor(nf, gel(g,i));
    1424           0 :   h = famat_reduce(famatV_factorback(h,e));
    1425           0 :   return sort_factor(h, (void*)&cmp_prime_ideal, &cmp_nodata);
    1426             : }
    1427             : 
    1428             : GEN
    1429      295920 : famat_reduce(GEN fa)
    1430             : {
    1431             :   GEN E, G, L, g, e;
    1432             :   long i, k, l;
    1433             : 
    1434      295920 :   if (typ(fa) != t_MAT || lgcols(fa) == 1) return fa;
    1435      285178 :   g = gel(fa,1); l = lg(g);
    1436      285178 :   e = gel(fa,2);
    1437      285178 :   L = gen_indexsort(g, (void*)&cmp_universal, &cmp_nodata);
    1438      285178 :   G = cgetg(l, t_COL);
    1439      285178 :   E = cgetg(l, t_COL);
    1440             :   /* merge */
    1441     2314786 :   for (k=i=1; i<l; i++,k++)
    1442             :   {
    1443     2029607 :     gel(G,k) = gel(g,L[i]);
    1444     2029607 :     gel(E,k) = gel(e,L[i]);
    1445     2029607 :     if (k > 1 && gidentical(gel(G,k), gel(G,k-1)))
    1446             :     {
    1447      839020 :       gel(E,k-1) = addii(gel(E,k), gel(E,k-1));
    1448      839021 :       k--;
    1449             :     }
    1450             :   }
    1451             :   /* kill 0 exponents */
    1452      285179 :   l = k;
    1453     1475766 :   for (k=i=1; i<l; i++)
    1454     1190587 :     if (!gequal0(gel(E,i)))
    1455             :     {
    1456     1166230 :       gel(G,k) = gel(G,i);
    1457     1166230 :       gel(E,k) = gel(E,i); k++;
    1458             :     }
    1459      285179 :   setlg(G, k);
    1460      285179 :   setlg(E, k); return mkmat2(G,E);
    1461             : }
    1462             : GEN
    1463          63 : matreduce(GEN f)
    1464          63 : { pari_sp av = avma;
    1465          63 :   switch(typ(f))
    1466             :   {
    1467          21 :     case t_VEC: case t_COL:
    1468             :     {
    1469          21 :       GEN e; f = vec_reduce(f, &e); settyp(f, t_COL);
    1470          21 :       return gerepilecopy(av, mkmat2(f, zc_to_ZC(e)));
    1471             :     }
    1472          35 :     case t_MAT:
    1473          35 :       if (lg(f) == 3) break;
    1474             :     default:
    1475          14 :       pari_err_TYPE("matreduce", f);
    1476             :   }
    1477          28 :   if (typ(gel(f,1)) == t_VECSMALL)
    1478           0 :     f = famatsmall_reduce(f);
    1479             :   else
    1480             :   {
    1481          28 :     if (!RgV_is_ZV(gel(f,2))) pari_err_TYPE("matreduce",f);
    1482          21 :     f = famat_reduce(f);
    1483             :   }
    1484          21 :   return gerepilecopy(av, f);
    1485             : }
    1486             : 
    1487             : GEN
    1488      176593 : famatsmall_reduce(GEN fa)
    1489             : {
    1490             :   GEN E, G, L, g, e;
    1491             :   long i, k, l;
    1492      176593 :   if (lgcols(fa) == 1) return fa;
    1493      176593 :   g = gel(fa,1); l = lg(g);
    1494      176593 :   e = gel(fa,2);
    1495      176593 :   L = vecsmall_indexsort(g);
    1496      176593 :   G = cgetg(l, t_VECSMALL);
    1497      176593 :   E = cgetg(l, t_VECSMALL);
    1498             :   /* merge */
    1499      484527 :   for (k=i=1; i<l; i++,k++)
    1500             :   {
    1501      307934 :     G[k] = g[L[i]];
    1502      307934 :     E[k] = e[L[i]];
    1503      307934 :     if (k > 1 && G[k] == G[k-1])
    1504             :     {
    1505        7990 :       E[k-1] += E[k];
    1506        7990 :       k--;
    1507             :     }
    1508             :   }
    1509             :   /* kill 0 exponents */
    1510      176593 :   l = k;
    1511      476537 :   for (k=i=1; i<l; i++)
    1512      299944 :     if (E[i])
    1513             :     {
    1514      296274 :       G[k] = G[i];
    1515      296274 :       E[k] = E[i]; k++;
    1516             :     }
    1517      176593 :   setlg(G, k);
    1518      176593 :   setlg(E, k); return mkmat2(G,E);
    1519             : }
    1520             : 
    1521             : GEN
    1522       53790 : famat_remove_trivial(GEN fa)
    1523             : {
    1524       53790 :   GEN P, E, p = gel(fa,1), e = gel(fa,2);
    1525       53790 :   long j, k, l = lg(p);
    1526       53790 :   P = cgetg(l, t_COL);
    1527       53790 :   E = cgetg(l, t_COL);
    1528     1740808 :   for (j = k = 1; j < l; j++)
    1529     1687018 :     if (signe(gel(e,j))) { gel(P,k) = gel(p,j); gel(E,k++) = gel(e,j); }
    1530       53790 :   setlg(P, k); setlg(E, k); return mkmat2(P,E);
    1531             : }
    1532             : 
    1533             : GEN
    1534       13765 : famatV_factorback(GEN v, GEN e)
    1535             : {
    1536       13765 :   long i, l = lg(e);
    1537             :   GEN V;
    1538       13765 :   if (l == 1) return trivial_fact();
    1539       13380 :   V = signe(gel(e,1))? famat_pow_shallow(gel(v,1), gel(e,1)): trivial_fact();
    1540       56655 :   for (i = 2; i < l; i++) V = famat_mulpow_shallow(V, gel(v,i), gel(e,i));
    1541       13380 :   return V;
    1542             : }
    1543             : 
    1544             : GEN
    1545       46753 : famatV_zv_factorback(GEN v, GEN e)
    1546             : {
    1547       46753 :   long i, l = lg(e);
    1548             :   GEN V;
    1549       46753 :   if (l == 1) return trivial_fact();
    1550       44310 :   V = uel(e,1)? famat_pows_shallow(gel(v,1), uel(e,1)): trivial_fact();
    1551      139188 :   for (i = 2; i < l; i++) V = famat_mulpows_shallow(V, gel(v,i), uel(e,i));
    1552       44310 :   return V;
    1553             : }
    1554             : 
    1555             : GEN
    1556      568191 : ZM_famat_limit(GEN fa, GEN limit)
    1557             : {
    1558             :   pari_sp av;
    1559             :   GEN E, G, g, e, r;
    1560             :   long i, k, l, n, lG;
    1561             : 
    1562      568191 :   if (lgcols(fa) == 1) return fa;
    1563      568184 :   g = gel(fa,1); l = lg(g);
    1564      568184 :   e = gel(fa,2);
    1565     1137516 :   for(n=0, i=1; i<l; i++)
    1566      569332 :     if (cmpii(gel(g,i),limit)<=0) n++;
    1567      568184 :   lG = n<l-1 ? n+2 : n+1;
    1568      568184 :   G = cgetg(lG, t_COL);
    1569      568184 :   E = cgetg(lG, t_COL);
    1570      568184 :   av = avma;
    1571     1137516 :   for (i=1, k=1, r = gen_1; i<l; i++)
    1572             :   {
    1573      569332 :     if (cmpii(gel(g,i),limit)<=0)
    1574             :     {
    1575      569199 :       gel(G,k) = gel(g,i);
    1576      569199 :       gel(E,k) = gel(e,i);
    1577      569199 :       k++;
    1578         133 :     } else r = mulii(r, powii(gel(g,i), gel(e,i)));
    1579             :   }
    1580      568184 :   if (k<i)
    1581             :   {
    1582         133 :     gel(G, k) = gerepileuptoint(av, r);
    1583         133 :     gel(E, k) = gen_1;
    1584             :   }
    1585      568184 :   return mkmat2(G,E);
    1586             : }
    1587             : 
    1588             : /* assume pr has degree 1 and coprime to Q_denom(x) */
    1589             : static GEN
    1590      123340 : to_Fp_coprime(GEN nf, GEN x, GEN modpr)
    1591             : {
    1592      123340 :   GEN d, r, p = modpr_get_p(modpr);
    1593      123340 :   x = nf_to_scalar_or_basis(nf,x);
    1594      123340 :   if (typ(x) != t_COL) return Rg_to_Fp(x,p);
    1595      121702 :   x = Q_remove_denom(x, &d);
    1596      121702 :   r = zk_to_Fq(x, modpr);
    1597      121701 :   if (d) r = Fp_div(r, d, p);
    1598      121701 :   return r;
    1599             : }
    1600             : 
    1601             : /* pr coprime to all denominators occurring in x */
    1602             : static GEN
    1603         693 : famat_to_Fp_coprime(GEN nf, GEN x, GEN modpr)
    1604             : {
    1605         693 :   GEN p = modpr_get_p(modpr);
    1606         693 :   GEN t = NULL, g = gel(x,1), e = gel(x,2), q = subiu(p,1);
    1607         693 :   long i, l = lg(g);
    1608        4571 :   for (i = 1; i < l; i++)
    1609             :   {
    1610        3878 :     GEN n = modii(gel(e,i), q);
    1611        3878 :     if (signe(n))
    1612             :     {
    1613        3871 :       GEN h = to_Fp_coprime(nf, gel(g,i), modpr);
    1614        3871 :       h = Fp_pow(h, n, p);
    1615        3871 :       t = t? Fp_mul(t, h, p): h;
    1616             :     }
    1617             :   }
    1618         693 :   return t? modii(t, p): gen_1;
    1619             : }
    1620             : 
    1621             : /* cf famat_to_nf_modideal_coprime, modpr attached to prime of degree 1 */
    1622             : GEN
    1623      120162 : nf_to_Fp_coprime(GEN nf, GEN x, GEN modpr)
    1624             : {
    1625         693 :   return typ(x)==t_MAT? famat_to_Fp_coprime(nf, x, modpr)
    1626      120855 :                       : to_Fp_coprime(nf, x, modpr);
    1627             : }
    1628             : 
    1629             : static long
    1630     4094628 : zk_pvalrem(GEN x, GEN p, GEN *py)
    1631     4094628 : { return (typ(x) == t_INT)? Z_pvalrem(x, p, py): ZV_pvalrem(x, p, py); }
    1632             : /* x a QC or Q. Return a ZC or Z, whose content is coprime to Z. Set v, dx
    1633             :  * such that x = p^v (newx / dx); dx = NULL if 1 */
    1634             : static GEN
    1635     4140444 : nf_remove_denom_p(GEN nf, GEN x, GEN p, GEN *pdx, long *pv)
    1636             : {
    1637             :   long vcx;
    1638             :   GEN dx;
    1639     4140444 :   x = nf_to_scalar_or_basis(nf, x);
    1640     4140464 :   x = Q_remove_denom(x, &dx);
    1641     4140468 :   if (dx)
    1642             :   {
    1643       61231 :     vcx = - Z_pvalrem(dx, p, &dx);
    1644       61231 :     if (!vcx) vcx = zk_pvalrem(x, p, &x);
    1645       61231 :     if (isint1(dx)) dx = NULL;
    1646             :   }
    1647             :   else
    1648             :   {
    1649     4079237 :     vcx = zk_pvalrem(x, p, &x);
    1650     4079223 :     dx = NULL;
    1651             :   }
    1652     4140454 :   *pv = vcx;
    1653     4140454 :   *pdx = dx; return x;
    1654             : }
    1655             : /* x = b^e/p^(e-1) in Z_K; x = 0 mod p/pr^e, (x,pr) = 1. Return NULL
    1656             :  * if p inert (instead of 1) */
    1657             : static GEN
    1658       94854 : p_makecoprime(GEN pr)
    1659             : {
    1660       94854 :   GEN B = pr_get_tau(pr), b;
    1661             :   long i, e;
    1662             : 
    1663       94854 :   if (typ(B) == t_INT) return NULL;
    1664       72097 :   b = gel(B,1); /* B = multiplication table by b */
    1665       72097 :   e = pr_get_e(pr);
    1666       72098 :   if (e == 1) return b;
    1667             :   /* one could also divide (exactly) by p in each iteration */
    1668       45187 :   for (i = 1; i < e; i++) b = ZM_ZC_mul(B, b);
    1669       22080 :   return ZC_Z_divexact(b, powiu(pr_get_p(pr), e-1));
    1670             : }
    1671             : 
    1672             : /* Compute A = prod g[i]^e[i] mod pr^k, assuming (A, pr) = 1.
    1673             :  * Method: modify each g[i] so that it becomes coprime to pr,
    1674             :  * g[i] *= (b/p)^v_pr(g[i]), where b/p = pr^(-1) times something integral
    1675             :  * and prime to p; globally, we multiply by (b/p)^v_pr(A) = 1.
    1676             :  * Optimizations:
    1677             :  * 1) remove all powers of p from contents, and consider extra generator p^vp;
    1678             :  * modified as p * (b/p)^e = b^e / p^(e-1)
    1679             :  * 2) remove denominators, coprime to p, by multiplying by inverse mod prk\cap Z
    1680             :  *
    1681             :  * EX = multiple of exponent of (O_K / pr^k)^* used to reduce the product in
    1682             :  * case the e[i] are large */
    1683             : GEN
    1684     2003842 : famat_makecoprime(GEN nf, GEN g, GEN e, GEN pr, GEN prk, GEN EX)
    1685             : {
    1686     2003842 :   GEN G, E, t, vp = NULL, p = pr_get_p(pr), prkZ = gcoeff(prk, 1,1);
    1687     2003839 :   long i, l = lg(g);
    1688             : 
    1689     2003839 :   G = cgetg(l+1, t_VEC);
    1690     2003855 :   E = cgetg(l+1, t_VEC); /* l+1: room for "modified p" */
    1691     6144278 :   for (i=1; i < l; i++)
    1692             :   {
    1693             :     long vcx;
    1694     4140438 :     GEN dx, x = nf_remove_denom_p(nf, gel(g,i), p, &dx, &vcx);
    1695     4140453 :     if (vcx) /* = v_p(content(g[i])) */
    1696             :     {
    1697      142072 :       GEN a = mulsi(vcx, gel(e,i));
    1698      142083 :       vp = vp? addii(vp, a): a;
    1699             :     }
    1700             :     /* x integral, content coprime to p; dx coprime to p */
    1701     4140464 :     if (typ(x) == t_INT)
    1702             :     { /* x coprime to p, hence to pr */
    1703     1128487 :       x = modii(x, prkZ);
    1704     1128487 :       if (dx) x = Fp_div(x, dx, prkZ);
    1705             :     }
    1706             :     else
    1707             :     {
    1708     3011977 :       (void)ZC_nfvalrem(x, pr, &x); /* x *= (b/p)^v_pr(x) */
    1709     3011939 :       x = ZC_hnfrem(FpC_red(x,prkZ), prk);
    1710     3011943 :       if (dx) x = FpC_Fp_mul(x, Fp_inv(dx,prkZ), prkZ);
    1711             :     }
    1712     4140404 :     gel(G,i) = x;
    1713     4140404 :     gel(E,i) = gel(e,i);
    1714             :   }
    1715             : 
    1716     2003840 :   t = vp? p_makecoprime(pr): NULL;
    1717     2003854 :   if (!t)
    1718             :   { /* no need for extra generator */
    1719     1931833 :     setlg(G,l);
    1720     1931835 :     setlg(E,l);
    1721             :   }
    1722             :   else
    1723             :   {
    1724       72021 :     gel(G,i) = FpC_red(t, prkZ);
    1725       72020 :     gel(E,i) = vp;
    1726             :   }
    1727     2003854 :   return famat_to_nf_modideal_coprime(nf, G, E, prk, EX);
    1728             : }
    1729             : 
    1730             : /* simplified version of famat_makecoprime for X = SUnits[1] */
    1731             : GEN
    1732          98 : sunits_makecoprime(GEN X, GEN pr, GEN prk)
    1733             : {
    1734          98 :   GEN G, p = pr_get_p(pr), prkZ = gcoeff(prk,1,1);
    1735          98 :   long i, l = lg(X);
    1736             : 
    1737          98 :   G = cgetg(l, t_VEC);
    1738        9205 :   for (i = 1; i < l; i++)
    1739             :   {
    1740        9107 :     GEN x = gel(X,i);
    1741        9107 :     if (typ(x) == t_INT) /* a prime */
    1742        1491 :       x = equalii(x,p)? p_makecoprime(pr): modii(x, prkZ);
    1743             :     else
    1744             :     {
    1745        7616 :       (void)ZC_nfvalrem(x, pr, &x); /* x *= (b/p)^v_pr(x) */
    1746        7616 :       x = ZC_hnfrem(FpC_red(x,prkZ), prk);
    1747             :     }
    1748        9107 :     gel(G,i) = x;
    1749             :   }
    1750          98 :   return G;
    1751             : }
    1752             : 
    1753             : /* prod g[i]^e[i] mod bid, assume (g[i], id) = 1 and 1 < lg(g) <= lg(e) */
    1754             : GEN
    1755       20118 : famat_to_nf_moddivisor(GEN nf, GEN g, GEN e, GEN bid)
    1756             : {
    1757       20118 :   GEN t, cyc = bid_get_cyc(bid);
    1758       20118 :   if (lg(cyc) == 1)
    1759           0 :     t = gen_1;
    1760             :   else
    1761       20118 :     t = famat_to_nf_modideal_coprime(nf, g, e, bid_get_ideal(bid),
    1762             :                                      cyc_get_expo(cyc));
    1763       20118 :   return set_sign_mod_divisor(nf, mkmat2(g,e), t, bid_get_sarch(bid));
    1764             : }
    1765             : 
    1766             : GEN
    1767    16002977 : vecmul(GEN x, GEN y)
    1768             : {
    1769    16002977 :   if (!is_vec_t(typ(x))) return gmul(x,y);
    1770     3524888 :   pari_APPLY_same(vecmul(gel(x,i), gel(y,i)))
    1771             : }
    1772             : 
    1773             : GEN
    1774      185983 : vecsqr(GEN x)
    1775             : {
    1776      185983 :   if (!is_vec_t(typ(x))) return gsqr(x);
    1777       46606 :   pari_APPLY_same(vecsqr(gel(x,i)))
    1778             : }
    1779             : 
    1780             : GEN
    1781         826 : vecinv(GEN x)
    1782             : {
    1783         826 :   if (!is_vec_t(typ(x))) return ginv(x);
    1784          56 :   pari_APPLY_same(vecinv(gel(x,i)))
    1785             : }
    1786             : 
    1787             : GEN
    1788           0 : vecpow(GEN x, GEN n)
    1789             : {
    1790           0 :   if (!is_vec_t(typ(x))) return powgi(x,n);
    1791           0 :   pari_APPLY_same(vecpow(gel(x,i), n))
    1792             : }
    1793             : 
    1794             : GEN
    1795         903 : vecdiv(GEN x, GEN y)
    1796             : {
    1797         903 :   if (!is_vec_t(typ(x))) return gdiv(x,y);
    1798         903 :   pari_APPLY_same(vecdiv(gel(x,i), gel(y,i)))
    1799             : }
    1800             : 
    1801             : /* A ideal as a square t_MAT */
    1802             : static GEN
    1803      264958 : idealmulelt(GEN nf, GEN x, GEN A)
    1804             : {
    1805             :   long i, lx;
    1806             :   GEN dx, dA, D;
    1807      264958 :   if (lg(A) == 1) return cgetg(1, t_MAT);
    1808      264958 :   x = nf_to_scalar_or_basis(nf,x);
    1809      264958 :   if (typ(x) != t_COL)
    1810       70550 :     return isintzero(x)? cgetg(1,t_MAT): RgM_Rg_mul(A, Q_abs_shallow(x));
    1811      194408 :   x = Q_remove_denom(x, &dx);
    1812      194408 :   A = Q_remove_denom(A, &dA);
    1813      194408 :   x = zk_multable(nf, x);
    1814      194408 :   D = mulii(zkmultable_capZ(x), gcoeff(A,1,1));
    1815      194408 :   x = zkC_multable_mul(A, x);
    1816      194408 :   settyp(x, t_MAT); lx = lg(x);
    1817             :   /* x may contain scalars (at most 1 since the ideal is nonzero)*/
    1818      751166 :   for (i=1; i<lx; i++)
    1819      565965 :     if (typ(gel(x,i)) == t_INT)
    1820             :     {
    1821        9207 :       if (i > 1) swap(gel(x,1), gel(x,i)); /* help HNF */
    1822        9207 :       gel(x,1) = scalarcol_shallow(gel(x,1), lx-1);
    1823        9207 :       break;
    1824             :     }
    1825      194408 :   x = ZM_hnfmodid(x, D);
    1826      194408 :   dx = mul_denom(dx,dA);
    1827      194408 :   return dx? gdiv(x,dx): x;
    1828             : }
    1829             : 
    1830             : /* nf a true nf, tx <= ty */
    1831             : static GEN
    1832      506112 : idealmul_aux(GEN nf, GEN x, GEN y, long tx, long ty)
    1833             : {
    1834             :   GEN z, cx, cy;
    1835      506112 :   switch(tx)
    1836             :   {
    1837      301283 :     case id_PRINCIPAL:
    1838      301283 :       switch(ty)
    1839             :       {
    1840       35891 :         case id_PRINCIPAL:
    1841       35891 :           return idealhnf_principal(nf, nfmul(nf,x,y));
    1842         434 :         case id_PRIME:
    1843             :         {
    1844         434 :           GEN p = pr_get_p(y), pi = pr_get_gen(y), cx;
    1845         434 :           if (pr_is_inert(y)) return RgM_Rg_mul(idealhnf_principal(nf,x),p);
    1846             : 
    1847         217 :           x = nf_to_scalar_or_basis(nf, x);
    1848         217 :           switch(typ(x))
    1849             :           {
    1850         203 :             case t_INT:
    1851         203 :               if (!signe(x)) return cgetg(1,t_MAT);
    1852         203 :               return ZM_Z_mul(pr_hnf(nf,y), absi_shallow(x));
    1853           7 :             case t_FRAC:
    1854           7 :               return RgM_Rg_mul(pr_hnf(nf,y), Q_abs_shallow(x));
    1855             :           }
    1856             :           /* t_COL */
    1857           7 :           x = Q_primitive_part(x, &cx);
    1858           7 :           x = zk_multable(nf, x);
    1859           7 :           z = shallowconcat(ZM_Z_mul(x,p), ZM_ZC_mul(x,pi));
    1860           7 :           z = ZM_hnfmodid(z, mulii(p, zkmultable_capZ(x)));
    1861           7 :           return cx? ZM_Q_mul(z, cx): z;
    1862             :         }
    1863      264958 :         default: /* id_MAT */
    1864      264958 :           return idealmulelt(nf, x,y);
    1865             :       }
    1866       41991 :     case id_PRIME:
    1867       41991 :       if (ty==id_PRIME)
    1868        4347 :       { y = pr_hnf(nf,y); cy = NULL; }
    1869             :       else
    1870       37644 :         y = Q_primitive_part(y, &cy);
    1871       41991 :       y = idealHNF_mul_two(nf,y,x);
    1872       41991 :       return cy? ZM_Q_mul(y,cy): y;
    1873             : 
    1874      162838 :     default: /* id_MAT */
    1875             :     {
    1876      162838 :       long N = nf_get_degree(nf);
    1877      162838 :       if (lg(x)-1 != N || lg(y)-1 != N) pari_err_DIM("idealmul");
    1878      162824 :       x = Q_primitive_part(x, &cx);
    1879      162824 :       y = Q_primitive_part(y, &cy); cx = mul_content(cx,cy);
    1880      162824 :       y = idealHNF_mul(nf,x,y);
    1881      162824 :       return cx? ZM_Q_mul(y,cx): y;
    1882             :     }
    1883             :   }
    1884             : }
    1885             : 
    1886             : /* output the ideal product x.y */
    1887             : GEN
    1888      506111 : idealmul(GEN nf, GEN x, GEN y)
    1889             : {
    1890             :   pari_sp av;
    1891             :   GEN res, ax, ay, z;
    1892      506111 :   long tx = idealtyp(&x,&ax);
    1893      506111 :   long ty = idealtyp(&y,&ay), f;
    1894      506112 :   if (tx>ty) { swap(ax,ay); swap(x,y); lswap(tx,ty); }
    1895      506112 :   f = (ax||ay); res = f? cgetg(3,t_VEC): NULL; /*product is an extended ideal*/
    1896      506112 :   av = avma;
    1897      506112 :   z = gerepileupto(av, idealmul_aux(checknf(nf), x,y, tx,ty));
    1898      506097 :   if (!f) return z;
    1899       27997 :   if (ax && ay)
    1900       26513 :     ax = ext_mul(nf, ax, ay);
    1901             :   else
    1902        1484 :     ax = gcopy(ax? ax: ay);
    1903       27997 :   gel(res,1) = z; gel(res,2) = ax; return res;
    1904             : }
    1905             : 
    1906             : /* Return x, integral in 2-elt form, such that pr^2 = c * x. cf idealpowprime
    1907             :  * nf = true nf */
    1908             : static GEN
    1909      285651 : idealsqrprime(GEN nf, GEN pr, GEN *pc)
    1910             : {
    1911      285651 :   GEN p = pr_get_p(pr), q, gen;
    1912      285649 :   long e = pr_get_e(pr), f = pr_get_f(pr);
    1913             : 
    1914      285651 :   q = (e == 1)? sqri(p): p;
    1915      285646 :   if (e <= 2 && e * f == nf_get_degree(nf))
    1916             :   { /* pr^e = (p) */
    1917       45534 :     *pc = q;
    1918       45534 :     return mkvec2(gen_1,gen_0);
    1919             :   }
    1920      240110 :   gen = nfsqr(nf, pr_get_gen(pr));
    1921      240119 :   gen = FpC_red(gen, q);
    1922      240104 :   *pc = NULL;
    1923      240104 :   return mkvec2(q, gen);
    1924             : }
    1925             : /* cf idealpow_aux */
    1926             : static GEN
    1927       38898 : idealsqr_aux(GEN nf, GEN x, long tx)
    1928             : {
    1929       38898 :   GEN T = nf_get_pol(nf), m, cx, a, alpha;
    1930       38898 :   long N = degpol(T);
    1931       38898 :   switch(tx)
    1932             :   {
    1933         154 :     case id_PRINCIPAL:
    1934         154 :       return idealhnf_principal(nf, nfsqr(nf,x));
    1935       10758 :     case id_PRIME:
    1936       10758 :       if (pr_is_inert(x)) return scalarmat(sqri(gel(x,1)), N);
    1937       10590 :       x = idealsqrprime(nf, x, &cx);
    1938       10590 :       x = idealhnf_two(nf,x);
    1939       10590 :       return cx? ZM_Z_mul(x, cx): x;
    1940       27986 :     default:
    1941       27986 :       x = Q_primitive_part(x, &cx);
    1942       27986 :       a = mat_ideal_two_elt(nf,x); alpha = gel(a,2); a = gel(a,1);
    1943       27986 :       alpha = nfsqr(nf,alpha);
    1944       27986 :       m = zk_scalar_or_multable(nf, alpha);
    1945       27986 :       if (typ(m) == t_INT) {
    1946        1635 :         x = gcdii(sqri(a), m);
    1947        1635 :         if (cx) x = gmul(x, gsqr(cx));
    1948        1635 :         x = scalarmat(x, N);
    1949             :       }
    1950             :       else
    1951             :       { /* could use gcdii(sqri(a), zkmultable_capZ(m)), but costly */
    1952       26351 :         x = ZM_hnfmodid(m, sqri(a));
    1953       26351 :         if (cx) cx = gsqr(cx);
    1954       26351 :         if (cx) x = ZM_Q_mul(x, cx);
    1955             :       }
    1956       27986 :       return x;
    1957             :   }
    1958             : }
    1959             : GEN
    1960       38898 : idealsqr(GEN nf, GEN x)
    1961             : {
    1962             :   pari_sp av;
    1963             :   GEN res, ax, z;
    1964       38898 :   long tx = idealtyp(&x,&ax);
    1965       38898 :   res = ax? cgetg(3,t_VEC): NULL; /*product is an extended ideal*/
    1966       38898 :   av = avma;
    1967       38898 :   z = gerepileupto(av, idealsqr_aux(checknf(nf), x, tx));
    1968       38898 :   if (!ax) return z;
    1969       33865 :   gel(res,1) = z;
    1970       33865 :   gel(res,2) = ext_sqr(nf, ax); return res;
    1971             : }
    1972             : 
    1973             : /* norm of an ideal */
    1974             : GEN
    1975      104631 : idealnorm(GEN nf, GEN x)
    1976             : {
    1977             :   pari_sp av;
    1978             :   long tx;
    1979             : 
    1980      104631 :   switch(idealtyp(&x, NULL))
    1981             :   {
    1982        4900 :     case id_PRIME: return pr_norm(x);
    1983       10551 :     case id_MAT: return RgM_det_triangular(x);
    1984             :   }
    1985             :   /* id_PRINCIPAL */
    1986       89180 :   nf = checknf(nf); av = avma;
    1987       89180 :   x = nfnorm(nf, x);
    1988       89180 :   tx = typ(x);
    1989       89180 :   if (tx == t_INT) return gerepileuptoint(av, absi(x));
    1990         420 :   if (tx != t_FRAC) pari_err_TYPE("idealnorm",x);
    1991         420 :   return gerepileupto(av, Q_abs(x));
    1992             : }
    1993             : 
    1994             : /* x \cap Z */
    1995             : GEN
    1996        3038 : idealdown(GEN nf, GEN x)
    1997             : {
    1998        3038 :   pari_sp av = avma;
    1999             :   GEN y, c;
    2000        3038 :   switch(idealtyp(&x, NULL))
    2001             :   {
    2002           7 :     case id_PRIME: return icopy(pr_get_p(x));
    2003        2142 :     case id_MAT: return gcopy(gcoeff(x,1,1));
    2004             :   }
    2005             :   /* id_PRINCIPAL */
    2006         889 :   nf = checknf(nf); av = avma;
    2007         889 :   x = nf_to_scalar_or_basis(nf, x);
    2008         889 :   if (is_rational_t(typ(x))) return Q_abs(x);
    2009          14 :   x = Q_primitive_part(x, &c);
    2010          14 :   y = zkmultable_capZ(zk_multable(nf, x));
    2011          14 :   return gerepilecopy(av, mul_content(c, y));
    2012             : }
    2013             : 
    2014             : /* true nf */
    2015             : static GEN
    2016          42 : idealismaximal_int(GEN nf, GEN p)
    2017             : {
    2018             :   GEN L;
    2019          42 :   if (!BPSW_psp(p)) return NULL;
    2020          77 :   if (!dvdii(nf_get_index(nf), p) &&
    2021          49 :       !FpX_is_irred(FpX_red(nf_get_pol(nf),p), p)) return NULL;
    2022          28 :   L = idealprimedec(nf, p);
    2023          28 :   return (lg(L) == 2 && pr_get_e(gel(L,1)) == 1)? gel(L,1): NULL;
    2024             : }
    2025             : /* true nf */
    2026             : static GEN
    2027          21 : idealismaximal_mat(GEN nf, GEN x)
    2028             : {
    2029             :   GEN p, c, L;
    2030             :   long i, l, f;
    2031          21 :   x = Q_primitive_part(x, &c);
    2032          21 :   p = gcoeff(x,1,1);
    2033          21 :   if (c)
    2034             :   {
    2035           7 :     if (typ(c) == t_FRAC || !equali1(p)) return NULL;
    2036           7 :     return idealismaximal_int(nf, c);
    2037             :   }
    2038          14 :   if (!BPSW_psp(p)) return NULL;
    2039          14 :   l = lg(x); f = 1;
    2040          35 :   for (i = 2; i < l; i++)
    2041             :   {
    2042          21 :     c = gcoeff(x,i,i);
    2043          21 :     if (equalii(c, p)) f++; else if (!equali1(c)) return NULL;
    2044             :   }
    2045          14 :   L = idealprimedec_limit_f(nf, p, f);
    2046          28 :   for (i = lg(L)-1; i; i--)
    2047             :   {
    2048          28 :     GEN pr = gel(L,i);
    2049          28 :     if (pr_get_f(pr) != f) break;
    2050          28 :     if (idealval(nf, x, pr) == 1) return pr;
    2051             :   }
    2052           0 :   return NULL;
    2053             : }
    2054             : /* true nf */
    2055             : static GEN
    2056          77 : idealismaximal_i(GEN nf, GEN x)
    2057             : {
    2058             :   GEN L, p, pr, c;
    2059             :   long i, l;
    2060          77 :   switch(idealtyp(&x, NULL))
    2061             :   {
    2062           7 :     case id_PRIME: return x;
    2063          21 :     case id_MAT: return idealismaximal_mat(nf, x);
    2064             :   }
    2065             :   /* id_PRINCIPAL */
    2066          49 :   x = nf_to_scalar_or_basis(nf, x);
    2067          49 :   switch(typ(x))
    2068             :   {
    2069          35 :     case t_INT: return idealismaximal_int(nf, absi_shallow(x));
    2070           0 :     case t_FRAC: return NULL;
    2071             :   }
    2072          14 :   x = Q_primitive_part(x, &c);
    2073          14 :   if (c) return NULL;
    2074          14 :   p = zkmultable_capZ(zk_multable(nf, x));
    2075          14 :   if (!BPSW_psp(p)) return NULL;
    2076           7 :   L = idealprimedec(nf, p); l = lg(L); pr = NULL;
    2077          21 :   for (i = 1; i < l; i++)
    2078             :   {
    2079          14 :     long v = ZC_nfval(x, gel(L,i));
    2080          14 :     if (v > 1 || (v && pr)) return NULL;
    2081          14 :     pr = gel(L,i);
    2082             :   }
    2083           7 :   return pr;
    2084             : }
    2085             : GEN
    2086          77 : idealismaximal(GEN nf, GEN x)
    2087             : {
    2088          77 :   pari_sp av = avma;
    2089          77 :   x = idealismaximal_i(checknf(nf), x);
    2090          77 :   if (!x) { set_avma(av); return gen_0; }
    2091          49 :   return gerepilecopy(av, x);
    2092             : }
    2093             : 
    2094             : /* I^(-1) = { x \in K, Tr(x D^(-1) I) \in Z }, D different of K/Q
    2095             :  *
    2096             :  * nf[5][6] = pp( D^(-1) ) = pp( HNF( T^(-1) ) ), T = (Tr(wi wj))
    2097             :  * nf[5][7] = same in 2-elt form.
    2098             :  * Assume I integral. Return the integral ideal (I\cap Z) I^(-1) */
    2099             : GEN
    2100      210483 : idealHNF_inv_Z(GEN nf, GEN I)
    2101             : {
    2102      210483 :   GEN J, dual, IZ = gcoeff(I,1,1); /* I \cap Z */
    2103      210483 :   if (isint1(IZ)) return matid(lg(I)-1);
    2104      196896 :   J = idealHNF_mul(nf,I, gmael(nf,5,7));
    2105             :  /* I in HNF, hence easily inverted; multiply by IZ to get integer coeffs
    2106             :   * missing content cancels while solving the linear equation */
    2107      196899 :   dual = shallowtrans( hnf_divscale(J, gmael(nf,5,6), IZ) );
    2108      196899 :   return ZM_hnfmodid(dual, IZ);
    2109             : }
    2110             : /* I HNF with rational coefficients (denominator d). */
    2111             : GEN
    2112       68393 : idealHNF_inv(GEN nf, GEN I)
    2113             : {
    2114       68393 :   GEN J, IQ = gcoeff(I,1,1); /* I \cap Q; d IQ = dI \cap Z */
    2115       68393 :   J = idealHNF_inv_Z(nf, Q_remove_denom(I, NULL)); /* = (dI)^(-1) * (d IQ) */
    2116       68393 :   return equali1(IQ)? J: RgM_Rg_div(J, IQ);
    2117             : }
    2118             : 
    2119             : /* return p * P^(-1)  [integral] */
    2120             : GEN
    2121       38398 : pr_inv_p(GEN pr)
    2122             : {
    2123       38398 :   if (pr_is_inert(pr)) return matid(pr_get_f(pr));
    2124       37775 :   return ZM_hnfmodid(pr_get_tau(pr), pr_get_p(pr));
    2125             : }
    2126             : GEN
    2127       17820 : pr_inv(GEN pr)
    2128             : {
    2129       17820 :   GEN p = pr_get_p(pr);
    2130       17820 :   if (pr_is_inert(pr)) return scalarmat(ginv(p), pr_get_f(pr));
    2131       17568 :   return RgM_Rg_div(ZM_hnfmodid(pr_get_tau(pr),p), p);
    2132             : }
    2133             : 
    2134             : GEN
    2135      114133 : idealinv(GEN nf, GEN x)
    2136             : {
    2137             :   GEN res, ax;
    2138             :   pari_sp av;
    2139      114133 :   long tx = idealtyp(&x,&ax), N;
    2140             : 
    2141      114133 :   res = ax? cgetg(3,t_VEC): NULL;
    2142      114133 :   nf = checknf(nf); av = avma;
    2143      114133 :   N = nf_get_degree(nf);
    2144      114133 :   switch (tx)
    2145             :   {
    2146       61808 :     case id_MAT:
    2147       61808 :       if (lg(x)-1 != N) pari_err_DIM("idealinv");
    2148       61808 :       x = idealHNF_inv(nf,x); break;
    2149       35295 :     case id_PRINCIPAL:
    2150       35295 :       x = nf_to_scalar_or_basis(nf, x);
    2151       35295 :       if (typ(x) != t_COL)
    2152       35246 :         x = idealhnf_principal(nf,ginv(x));
    2153             :       else
    2154             :       { /* nfinv + idealhnf where we already know (x) \cap Z */
    2155             :         GEN c, d;
    2156          49 :         x = Q_remove_denom(x, &c);
    2157          49 :         x = zk_inv(nf, x);
    2158          49 :         x = Q_remove_denom(x, &d); /* true inverse is c/d * x */
    2159          49 :         if (!d) /* x and x^(-1) integral => x a unit */
    2160          14 :           x = c? scalarmat(c, N): matid(N);
    2161             :         else
    2162             :         {
    2163          35 :           c = c? gdiv(c,d): ginv(d);
    2164          35 :           x = zk_multable(nf, x);
    2165          35 :           x = ZM_Q_mul(ZM_hnfmodid(x,d), c);
    2166             :         }
    2167             :       }
    2168       35295 :       break;
    2169       17030 :     case id_PRIME:
    2170       17030 :       x = pr_inv(x); break;
    2171             :   }
    2172      114132 :   x = gerepileupto(av,x); if (!ax) return x;
    2173       20406 :   gel(res,1) = x;
    2174       20406 :   gel(res,2) = ext_inv(nf, ax); return res;
    2175             : }
    2176             : 
    2177             : /* write x = A/B, A,B coprime integral ideals */
    2178             : GEN
    2179      379550 : idealnumden(GEN nf, GEN x)
    2180             : {
    2181      379550 :   pari_sp av = avma;
    2182             :   GEN x0, c, d, A, B, J;
    2183      379550 :   long tx = idealtyp(&x, NULL);
    2184      379550 :   nf = checknf(nf);
    2185      379553 :   switch (tx)
    2186             :   {
    2187           7 :     case id_PRIME:
    2188           7 :       retmkvec2(idealhnf(nf, x), gen_1);
    2189      137997 :     case id_PRINCIPAL:
    2190             :     {
    2191             :       GEN xZ, mx;
    2192      137997 :       x = nf_to_scalar_or_basis(nf, x);
    2193      137997 :       switch(typ(x))
    2194             :       {
    2195       86506 :         case t_INT: return gerepilecopy(av, mkvec2(absi_shallow(x),gen_1));
    2196        2639 :         case t_FRAC:return gerepilecopy(av, mkvec2(absi_shallow(gel(x,1)), gel(x,2)));
    2197             :       }
    2198             :       /* t_COL */
    2199       48852 :       x = Q_remove_denom(x, &d);
    2200       48852 :       if (!d) return gerepilecopy(av, mkvec2(idealhnf_shallow(nf, x), gen_1));
    2201         105 :       mx = zk_multable(nf, x);
    2202         105 :       xZ = zkmultable_capZ(mx);
    2203         105 :       x = ZM_hnfmodid(mx, xZ); /* principal ideal (x) */
    2204         105 :       x0 = mkvec2(xZ, mx); /* same, for fast multiplication */
    2205         105 :       break;
    2206             :     }
    2207      241549 :     default: /* id_MAT */
    2208             :     {
    2209      241549 :       long n = lg(x)-1;
    2210      241549 :       if (n == 0) return mkvec2(gen_0, gen_1);
    2211      241549 :       if (n != nf_get_degree(nf)) pari_err_DIM("idealnumden");
    2212      241549 :       x0 = x = Q_remove_denom(x, &d);
    2213      241541 :       if (!d) return gerepilecopy(av, mkvec2(x, gen_1));
    2214          21 :       break;
    2215             :     }
    2216             :   }
    2217         126 :   J = hnfmodid(x, d); /* = d/B */
    2218         126 :   c = gcoeff(J,1,1); /* (d/B) \cap Z, divides d */
    2219         126 :   B = idealHNF_inv_Z(nf, J); /* (d/B \cap Z) B/d */
    2220         126 :   if (!equalii(c,d)) B = ZM_Z_mul(B, diviiexact(d,c)); /* = B ! */
    2221         126 :   A = idealHNF_mul(nf, B, x0); /* d * (original x) * B = d A */
    2222         126 :   A = ZM_Z_divexact(A, d); /* = A ! */
    2223         126 :   return gerepilecopy(av, mkvec2(A, B));
    2224             : }
    2225             : 
    2226             : /* Return x, integral in 2-elt form, such that pr^n = c * x. Assume n != 0.
    2227             :  * nf = true nf */
    2228             : static GEN
    2229     1196325 : idealpowprime(GEN nf, GEN pr, GEN n, GEN *pc)
    2230             : {
    2231     1196325 :   GEN p = pr_get_p(pr), q, gen;
    2232             : 
    2233     1196315 :   *pc = NULL;
    2234     1196315 :   if (is_pm1(n)) /* n = 1 special cased for efficiency */
    2235             :   {
    2236      603757 :     q = p;
    2237      603757 :     if (typ(pr_get_tau(pr)) == t_INT) /* inert */
    2238             :     {
    2239           0 :       *pc = (signe(n) >= 0)? p: ginv(p);
    2240           0 :       return mkvec2(gen_1,gen_0);
    2241             :     }
    2242      603743 :     if (signe(n) >= 0) gen = pr_get_gen(pr);
    2243             :     else
    2244             :     {
    2245      155926 :       gen = pr_get_tau(pr); /* possibly t_MAT */
    2246      155943 :       *pc = ginv(p);
    2247             :     }
    2248             :   }
    2249      592621 :   else if (equalis(n,2)) return idealsqrprime(nf, pr, pc);
    2250             :   else
    2251             :   {
    2252      317559 :     long e = pr_get_e(pr), f = pr_get_f(pr);
    2253      317563 :     GEN r, m = truedvmdis(n, e, &r);
    2254      317536 :     if (e * f == nf_get_degree(nf))
    2255             :     { /* pr^e = (p) */
    2256       76338 :       if (signe(m)) *pc = powii(p,m);
    2257       76338 :       if (!signe(r)) return mkvec2(gen_1,gen_0);
    2258       36396 :       q = p;
    2259       36396 :       gen = nfpow(nf, pr_get_gen(pr), r);
    2260             :     }
    2261             :     else
    2262             :     {
    2263      241211 :       m = absi_shallow(m);
    2264      241217 :       if (signe(r)) m = addiu(m,1);
    2265      241217 :       q = powii(p,m); /* m = ceil(|n|/e) */
    2266      241222 :       if (signe(n) >= 0) gen = nfpow(nf, pr_get_gen(pr), n);
    2267             :       else
    2268             :       {
    2269       24397 :         gen = pr_get_tau(pr);
    2270       24398 :         if (typ(gen) == t_MAT) gen = gel(gen,1);
    2271       24398 :         n = negi(n);
    2272       24398 :         gen = ZC_Z_divexact(nfpow(nf, gen, n), powii(p, subii(n,m)));
    2273       24398 :         *pc = ginv(q);
    2274             :       }
    2275             :     }
    2276      277627 :     gen = FpC_red(gen, q);
    2277             :   }
    2278      881344 :   return mkvec2(q, gen);
    2279             : }
    2280             : 
    2281             : /* True nf. x * pr^n. Assume x in HNF or scalar (possibly nonintegral) */
    2282             : GEN
    2283      767452 : idealmulpowprime(GEN nf, GEN x, GEN pr, GEN n)
    2284             : {
    2285             :   GEN c, cx, y;
    2286      767452 :   long N = nf_get_degree(nf);
    2287             : 
    2288      767450 :   if (!signe(n)) return typ(x) == t_MAT? x: scalarmat_shallow(x, N);
    2289             : 
    2290             :   /* inert, special cased for efficiency */
    2291      767443 :   if (pr_is_inert(pr))
    2292             :   {
    2293       76063 :     GEN q = powii(pr_get_p(pr), n);
    2294       74163 :     return typ(x) == t_MAT? RgM_Rg_mul(x,q)
    2295      150212 :                           : scalarmat_shallow(gmul(Q_abs(x),q), N);
    2296             :   }
    2297             : 
    2298      691408 :   y = idealpowprime(nf, pr, n, &c);
    2299      691368 :   if (typ(x) == t_MAT)
    2300      689221 :   { x = Q_primitive_part(x, &cx); if (is_pm1(gcoeff(x,1,1))) x = NULL; }
    2301             :   else
    2302        2147 :   { cx = x; x = NULL; }
    2303      691109 :   cx = mul_content(c,cx);
    2304      691137 :   if (x)
    2305      525714 :     x = idealHNF_mul_two(nf,x,y);
    2306             :   else
    2307      165423 :     x = idealhnf_two(nf,y);
    2308      691544 :   if (cx) x = ZM_Q_mul(x,cx);
    2309      691183 :   return x;
    2310             : }
    2311             : GEN
    2312       11971 : idealdivpowprime(GEN nf, GEN x, GEN pr, GEN n)
    2313             : {
    2314       11971 :   return idealmulpowprime(nf,x,pr, negi(n));
    2315             : }
    2316             : 
    2317             : /* nf = true nf */
    2318             : static GEN
    2319      888555 : idealpow_aux(GEN nf, GEN x, long tx, GEN n)
    2320             : {
    2321      888555 :   GEN T = nf_get_pol(nf), m, cx, n1, a, alpha;
    2322      888555 :   long N = degpol(T), s = signe(n);
    2323      888556 :   if (!s) return matid(N);
    2324      872207 :   switch(tx)
    2325             :   {
    2326       75528 :     case id_PRINCIPAL:
    2327       75528 :       return idealhnf_principal(nf, nfpow(nf,x,n));
    2328      601677 :     case id_PRIME:
    2329      601677 :       if (pr_is_inert(x)) return scalarmat(powii(gel(x,1), n), N);
    2330      504897 :       x = idealpowprime(nf, x, n, &cx);
    2331      504875 :       x = idealhnf_two(nf,x);
    2332      504901 :       return cx? ZM_Q_mul(x, cx): x;
    2333      195002 :     default:
    2334      195002 :       if (is_pm1(n)) return (s < 0)? idealinv(nf, x): gcopy(x);
    2335       69160 :       n1 = (s < 0)? negi(n): n;
    2336             : 
    2337       69160 :       x = Q_primitive_part(x, &cx);
    2338       69160 :       a = mat_ideal_two_elt(nf,x); alpha = gel(a,2); a = gel(a,1);
    2339       69160 :       alpha = nfpow(nf,alpha,n1);
    2340       69160 :       m = zk_scalar_or_multable(nf, alpha);
    2341       69160 :       if (typ(m) == t_INT) {
    2342         553 :         x = gcdii(powii(a,n1), m);
    2343         553 :         if (s<0) x = ginv(x);
    2344         553 :         if (cx) x = gmul(x, powgi(cx,n));
    2345         553 :         x = scalarmat(x, N);
    2346             :       }
    2347             :       else
    2348             :       { /* could use gcdii(powii(a,n1), zkmultable_capZ(m)), but costly */
    2349       68607 :         x = ZM_hnfmodid(m, powii(a,n1));
    2350       68607 :         if (cx) cx = powgi(cx,n);
    2351       68607 :         if (s<0) {
    2352           7 :           GEN xZ = gcoeff(x,1,1);
    2353           7 :           cx = cx ? gdiv(cx, xZ): ginv(xZ);
    2354           7 :           x = idealHNF_inv_Z(nf,x);
    2355             :         }
    2356       68607 :         if (cx) x = ZM_Q_mul(x, cx);
    2357             :       }
    2358       69160 :       return x;
    2359             :   }
    2360             : }
    2361             : 
    2362             : /* raise the ideal x to the power n (in Z) */
    2363             : GEN
    2364      888549 : idealpow(GEN nf, GEN x, GEN n)
    2365             : {
    2366             :   pari_sp av;
    2367             :   long tx;
    2368             :   GEN res, ax;
    2369             : 
    2370      888549 :   if (typ(n) != t_INT) pari_err_TYPE("idealpow",n);
    2371      888549 :   tx = idealtyp(&x,&ax);
    2372      888554 :   res = ax? cgetg(3,t_VEC): NULL;
    2373      888554 :   av = avma;
    2374      888554 :   x = gerepileupto(av, idealpow_aux(checknf(nf), x, tx, n));
    2375      888550 :   if (!ax) return x;
    2376           0 :   gel(res,1) = x;
    2377           0 :   gel(res,2) = ext_pow(nf, ax, n);
    2378           0 :   return res;
    2379             : }
    2380             : 
    2381             : /* Return ideal^e in number field nf. e is a C integer. */
    2382             : GEN
    2383      274613 : idealpows(GEN nf, GEN ideal, long e)
    2384             : {
    2385      274613 :   long court[] = {evaltyp(t_INT) | _evallg(3),0,0};
    2386      274613 :   affsi(e,court); return idealpow(nf,ideal,court);
    2387             : }
    2388             : 
    2389             : static GEN
    2390       28571 : _idealmulred(GEN nf, GEN x, GEN y)
    2391       28571 : { return idealred(nf,idealmul(nf,x,y)); }
    2392             : static GEN
    2393       35650 : _idealsqrred(GEN nf, GEN x)
    2394       35650 : { return idealred(nf,idealsqr(nf,x)); }
    2395             : static GEN
    2396       11364 : _mul(void *data, GEN x, GEN y) { return _idealmulred((GEN)data,x,y); }
    2397             : static GEN
    2398       35650 : _sqr(void *data, GEN x) { return _idealsqrred((GEN)data, x); }
    2399             : 
    2400             : /* compute x^n (x ideal, n integer), reducing along the way */
    2401             : GEN
    2402       80263 : idealpowred(GEN nf, GEN x, GEN n)
    2403             : {
    2404       80263 :   pari_sp av = avma, av2;
    2405             :   long s;
    2406             :   GEN y;
    2407             : 
    2408       80263 :   if (typ(n) != t_INT) pari_err_TYPE("idealpowred",n);
    2409       80263 :   s = signe(n); if (s == 0) return idealpow(nf,x,n);
    2410       80263 :   y = gen_pow_i(x, n, (void*)nf, &_sqr, &_mul);
    2411       80263 :   av2 = avma;
    2412       80263 :   if (s < 0) y = idealinv(nf,y);
    2413       80263 :   if (s < 0 || is_pm1(n)) y = idealred(nf,y);
    2414       80263 :   return avma == av2? gerepilecopy(av,y): gerepileupto(av,y);
    2415             : }
    2416             : 
    2417             : GEN
    2418       17207 : idealmulred(GEN nf, GEN x, GEN y)
    2419             : {
    2420       17207 :   pari_sp av = avma;
    2421       17207 :   return gerepileupto(av, _idealmulred(nf,x,y));
    2422             : }
    2423             : 
    2424             : long
    2425          91 : isideal(GEN nf,GEN x)
    2426             : {
    2427          91 :   long N, i, j, lx, tx = typ(x);
    2428             :   pari_sp av;
    2429             :   GEN T, xZ;
    2430             : 
    2431          91 :   nf = checknf(nf); T = nf_get_pol(nf); lx = lg(x);
    2432          91 :   if (tx==t_VEC && lx==3) { x = gel(x,1); tx = typ(x); lx = lg(x); }
    2433          91 :   switch(tx)
    2434             :   {
    2435          14 :     case t_INT: case t_FRAC: return 1;
    2436           7 :     case t_POL: return varn(x) == varn(T);
    2437           7 :     case t_POLMOD: return RgX_equal_var(T, gel(x,1));
    2438          14 :     case t_VEC: return get_prid(x)? 1 : 0;
    2439          42 :     case t_MAT: break;
    2440           7 :     default: return 0;
    2441             :   }
    2442          42 :   N = degpol(T);
    2443          42 :   if (lx-1 != N) return (lx == 1);
    2444          28 :   if (nbrows(x) != N) return 0;
    2445             : 
    2446          28 :   av = avma; x = Q_primpart(x);
    2447          28 :   if (!ZM_ishnf(x)) return 0;
    2448          14 :   xZ = gcoeff(x,1,1);
    2449          21 :   for (j=2; j<=N; j++)
    2450          14 :     if (!dvdii(xZ, gcoeff(x,j,j))) return gc_long(av,0);
    2451          14 :   for (i=2; i<=N; i++)
    2452          14 :     for (j=2; j<=N; j++)
    2453           7 :        if (! hnf_invimage(x, zk_ei_mul(nf,gel(x,i),j))) return gc_long(av,0);
    2454           7 :   return gc_long(av,1);
    2455             : }
    2456             : 
    2457             : GEN
    2458       39316 : idealdiv(GEN nf, GEN x, GEN y)
    2459             : {
    2460       39316 :   pari_sp av = avma, tetpil;
    2461       39316 :   GEN z = idealinv(nf,y);
    2462       39316 :   tetpil = avma; return gerepile(av,tetpil, idealmul(nf,x,z));
    2463             : }
    2464             : 
    2465             : /* This routine computes the quotient x/y of two ideals in the number field nf.
    2466             :  * It assumes that the quotient is an integral ideal.  The idea is to find an
    2467             :  * ideal z dividing y such that gcd(Nx/Nz, Nz) = 1.  Then
    2468             :  *
    2469             :  *   x + (Nx/Nz)    x
    2470             :  *   ----------- = ---
    2471             :  *   y + (Ny/Nz)    y
    2472             :  *
    2473             :  * Proof: we can assume x and y are integral. Let p be any prime ideal
    2474             :  *
    2475             :  * If p | Nz, then it divides neither Nx/Nz nor Ny/Nz (since Nx/Nz is the
    2476             :  * product of the integers N(x/y) and N(y/z)).  Both the numerator and the
    2477             :  * denominator on the left will be coprime to p.  So will x/y, since x/y is
    2478             :  * assumed integral and its norm N(x/y) is coprime to p.
    2479             :  *
    2480             :  * If instead p does not divide Nz, then v_p (Nx/Nz) = v_p (Nx) >= v_p(x).
    2481             :  * Hence v_p (x + Nx/Nz) = v_p(x).  Likewise for the denominators.  QED.
    2482             :  *
    2483             :  *                Peter Montgomery.  July, 1994. */
    2484             : static void
    2485           7 : err_divexact(GEN x, GEN y)
    2486           7 : { pari_err_DOMAIN("idealdivexact","denominator(x/y)", "!=",
    2487           0 :                   gen_1,mkvec2(x,y)); }
    2488             : GEN
    2489        5034 : idealdivexact(GEN nf, GEN x0, GEN y0)
    2490             : {
    2491        5034 :   pari_sp av = avma;
    2492             :   GEN x, y, xZ, yZ, Nx, Ny, Nz, cy, q, r;
    2493             : 
    2494        5034 :   nf = checknf(nf);
    2495        5034 :   x = idealhnf_shallow(nf, x0);
    2496        5034 :   y = idealhnf_shallow(nf, y0);
    2497        5034 :   if (lg(y) == 1) pari_err_INV("idealdivexact", y0);
    2498        5027 :   if (lg(x) == 1) { set_avma(av); return cgetg(1, t_MAT); } /* numerator is zero */
    2499        5027 :   y = Q_primitive_part(y, &cy);
    2500        5027 :   if (cy) x = RgM_Rg_div(x,cy);
    2501        5027 :   xZ = gcoeff(x,1,1); if (typ(xZ) != t_INT) err_divexact(x,y);
    2502        5020 :   yZ = gcoeff(y,1,1); if (isint1(yZ)) return gerepilecopy(av, x);
    2503        2801 :   Nx = idealnorm(nf,x);
    2504        2801 :   Ny = idealnorm(nf,y);
    2505        2801 :   if (typ(Nx) != t_INT) err_divexact(x,y);
    2506        2801 :   q = dvmdii(Nx,Ny, &r);
    2507        2801 :   if (signe(r)) err_divexact(x,y);
    2508        2801 :   if (is_pm1(q)) { set_avma(av); return matid(nf_get_degree(nf)); }
    2509             :   /* Find a norm Nz | Ny such that gcd(Nx/Nz, Nz) = 1 */
    2510         576 :   for (Nz = Ny;;) /* q = Nx/Nz */
    2511         472 :   {
    2512        1048 :     GEN p1 = gcdii(Nz, q);
    2513        1048 :     if (is_pm1(p1)) break;
    2514         472 :     Nz = diviiexact(Nz,p1);
    2515         472 :     q = mulii(q,p1);
    2516             :   }
    2517         576 :   xZ = gcoeff(x,1,1); q = gcdii(q, xZ);
    2518         576 :   if (!equalii(xZ,q))
    2519             :   { /* Replace x/y  by  x+(Nx/Nz) / y+(Ny/Nz) */
    2520         426 :     x = ZM_hnfmodid(x, q);
    2521             :     /* y reduced to unit ideal ? */
    2522         426 :     if (Nz == Ny) return gerepileupto(av, x);
    2523             : 
    2524         125 :     yZ = gcoeff(y,1,1); q = gcdii(diviiexact(Ny,Nz), yZ);
    2525         125 :     y = ZM_hnfmodid(y, q);
    2526             :   }
    2527         275 :   yZ = gcoeff(y,1,1);
    2528         275 :   y = idealHNF_mul(nf,x, idealHNF_inv_Z(nf,y));
    2529         275 :   return gerepileupto(av, ZM_Z_divexact(y, yZ));
    2530             : }
    2531             : 
    2532             : GEN
    2533          21 : idealintersect(GEN nf, GEN x, GEN y)
    2534             : {
    2535          21 :   pari_sp av = avma;
    2536             :   long lz, lx, i;
    2537             :   GEN z, dx, dy, xZ, yZ;;
    2538             : 
    2539          21 :   nf = checknf(nf);
    2540          21 :   x = idealhnf_shallow(nf,x);
    2541          21 :   y = idealhnf_shallow(nf,y);
    2542          21 :   if (lg(x) == 1 || lg(y) == 1) { set_avma(av); return cgetg(1,t_MAT); }
    2543          14 :   x = Q_remove_denom(x, &dx);
    2544          14 :   y = Q_remove_denom(y, &dy);
    2545          14 :   if (dx) y = ZM_Z_mul(y, dx);
    2546          14 :   if (dy) x = ZM_Z_mul(x, dy);
    2547          14 :   xZ = gcoeff(x,1,1);
    2548          14 :   yZ = gcoeff(y,1,1);
    2549          14 :   dx = mul_denom(dx,dy);
    2550          14 :   z = ZM_lll(shallowconcat(x,y), 0.99, LLL_KER); lz = lg(z);
    2551          14 :   lx = lg(x);
    2552          63 :   for (i=1; i<lz; i++) setlg(z[i], lx);
    2553          14 :   z = ZM_hnfmodid(ZM_mul(x,z), lcmii(xZ, yZ));
    2554          14 :   if (dx) z = RgM_Rg_div(z,dx);
    2555          14 :   return gerepileupto(av,z);
    2556             : }
    2557             : 
    2558             : /*******************************************************************/
    2559             : /*                                                                 */
    2560             : /*                      T2-IDEAL REDUCTION                         */
    2561             : /*                                                                 */
    2562             : /*******************************************************************/
    2563             : 
    2564             : static GEN
    2565          21 : chk_vdir(GEN nf, GEN vdir)
    2566             : {
    2567          21 :   long i, l = lg(vdir);
    2568             :   GEN v;
    2569          21 :   if (l != lg(nf_get_roots(nf))) pari_err_DIM("idealred");
    2570          14 :   switch(typ(vdir))
    2571             :   {
    2572           0 :     case t_VECSMALL: return vdir;
    2573          14 :     case t_VEC: break;
    2574           0 :     default: pari_err_TYPE("idealred",vdir);
    2575             :   }
    2576          14 :   v = cgetg(l, t_VECSMALL);
    2577          56 :   for (i = 1; i < l; i++) v[i] = itos(gceil(gel(vdir,i)));
    2578          14 :   return v;
    2579             : }
    2580             : 
    2581             : static void
    2582       12639 : twistG(GEN G, long r1, long i, long v)
    2583             : {
    2584       12639 :   long j, lG = lg(G);
    2585       12639 :   if (i <= r1) {
    2586       37275 :     for (j=1; j<lG; j++) gcoeff(G,i,j) = gmul2n(gcoeff(G,i,j), v);
    2587             :   } else {
    2588         578 :     long k = (i<<1) - r1;
    2589        4402 :     for (j=1; j<lG; j++)
    2590             :     {
    2591        3824 :       gcoeff(G,k-1,j) = gmul2n(gcoeff(G,k-1,j), v);
    2592        3824 :       gcoeff(G,k  ,j) = gmul2n(gcoeff(G,k  ,j), v);
    2593             :     }
    2594             :   }
    2595       12639 : }
    2596             : 
    2597             : GEN
    2598      138656 : nf_get_Gtwist(GEN nf, GEN vdir)
    2599             : {
    2600             :   long i, l, v, r1;
    2601             :   GEN G;
    2602             : 
    2603      138656 :   if (!vdir) return nf_get_roundG(nf);
    2604          21 :   if (typ(vdir) == t_MAT)
    2605             :   {
    2606           0 :     long N = nf_get_degree(nf);
    2607           0 :     if (lg(vdir) != N+1 || lgcols(vdir) != N+1) pari_err_DIM("idealred");
    2608           0 :     return vdir;
    2609             :   }
    2610          21 :   vdir = chk_vdir(nf, vdir);
    2611          14 :   G = RgM_shallowcopy(nf_get_G(nf));
    2612          14 :   r1 = nf_get_r1(nf);
    2613          14 :   l = lg(vdir);
    2614          56 :   for (i=1; i<l; i++)
    2615             :   {
    2616          42 :     v = vdir[i]; if (!v) continue;
    2617          42 :     twistG(G, r1, i, v);
    2618             :   }
    2619          14 :   return RM_round_maxrank(G);
    2620             : }
    2621             : GEN
    2622       12597 : nf_get_Gtwist1(GEN nf, long i)
    2623             : {
    2624       12597 :   GEN G = RgM_shallowcopy( nf_get_G(nf) );
    2625       12597 :   long r1 = nf_get_r1(nf);
    2626       12597 :   twistG(G, r1, i, 10);
    2627       12597 :   return RM_round_maxrank(G);
    2628             : }
    2629             : 
    2630             : GEN
    2631       97411 : RM_round_maxrank(GEN G0)
    2632             : {
    2633       97411 :   long e, r = lg(G0)-1;
    2634       97411 :   pari_sp av = avma;
    2635       97411 :   for (e = 4; ; e <<= 1, set_avma(av))
    2636           0 :   {
    2637       97411 :     GEN G = gmul2n(G0, e), H = ground(G);
    2638       97409 :     if (ZM_rank(H) == r) return H; /* maximal rank ? */
    2639             :   }
    2640             : }
    2641             : 
    2642             : GEN
    2643      138649 : idealred0(GEN nf, GEN I, GEN vdir)
    2644             : {
    2645      138649 :   pari_sp av = avma;
    2646      138649 :   GEN G, aI, IZ, J, y, my, dyi, yi, c1 = NULL;
    2647             :   long N;
    2648             : 
    2649      138649 :   nf = checknf(nf);
    2650      138649 :   N = nf_get_degree(nf);
    2651             :   /* put first for sanity checks, unused when I obviously principal */
    2652      138649 :   G = nf_get_Gtwist(nf, vdir);
    2653      138642 :   switch (idealtyp(&I,&aI))
    2654             :   {
    2655       37220 :     case id_PRIME:
    2656       37220 :       if (pr_is_inert(I)) {
    2657         655 :         if (!aI) { set_avma(av); return matid(N); }
    2658         655 :         c1 = gel(I,1); I = matid(N);
    2659         655 :         goto END;
    2660             :       }
    2661       36565 :       IZ = pr_get_p(I);
    2662       36565 :       J = pr_inv_p(I);
    2663       36565 :       I = idealhnf_two(nf,I);
    2664       36565 :       break;
    2665      101394 :     case id_MAT:
    2666      101394 :       if (lg(I)-1 != N) pari_err_DIM("idealred");
    2667      101387 :       I = Q_primitive_part(I, &c1);
    2668      101386 :       IZ = gcoeff(I,1,1);
    2669      101386 :       if (is_pm1(IZ))
    2670             :       {
    2671        8831 :         if (!aI) { set_avma(av); return matid(N); }
    2672        8747 :         goto END;
    2673             :       }
    2674       92555 :       J = idealHNF_inv_Z(nf, I);
    2675       92556 :       break;
    2676          21 :     default: /* id_PRINCIPAL, silly case */
    2677          21 :       if (gequal0(I)) I = cgetg(1,t_MAT); else { c1 = I; I = matid(N); }
    2678          21 :       if (!aI) return I;
    2679          14 :       goto END;
    2680             :   }
    2681             :   /* now I integral, HNF; and J = (I\cap Z) I^(-1), integral */
    2682      129121 :   y = idealpseudomin(J, G); /* small elt in (I\cap Z)I^(-1), integral */
    2683      129121 :   if (ZV_isscalar(y))
    2684             :   { /* already reduced */
    2685       71098 :     if (!aI) return gerepilecopy(av, I);
    2686       67919 :     goto END;
    2687             :   }
    2688             : 
    2689       58023 :   my = zk_multable(nf, y);
    2690       58022 :   I = ZM_Z_divexact(ZM_mul(my, I), IZ); /* y I / (I\cap Z), integral */
    2691       58022 :   c1 = mul_content(c1, IZ);
    2692       58022 :   if (equali1(c1)) c1 = NULL; /* can be simplified with IZ */
    2693       58022 :   yi = ZM_gauss(my, col_ei(N,1)); /* y^-1 */
    2694       58023 :   dyi = Q_denom(yi); /* generates (y) \cap Z */
    2695       58023 :   I = hnfmodid(I, dyi);
    2696       58023 :   if (!aI) return gerepileupto(av, I);
    2697       56050 :   if (typ(aI) == t_MAT)
    2698             :   {
    2699       39313 :     GEN nyi = Q_muli_to_int(yi, dyi);
    2700       39313 :     if (gexpo(nyi) >= gexpo(y))
    2701       20847 :       aI = famat_div(aI, y); /* yi "larger" than y, keep the latter */
    2702             :     else
    2703             :     { /* use yi */
    2704       18466 :       aI = famat_mul(aI, nyi);
    2705       18466 :       c1 = div_content(c1, dyi);
    2706             :     }
    2707       39313 :     if (c1) { aI = famat_mul(aI, Q_to_famat(c1)); c1 = NULL; }
    2708             :   }
    2709             :   else
    2710       16737 :     c1 = c1? RgC_Rg_mul(yi, c1): yi;
    2711      133385 : END:
    2712      133385 :   if (c1) aI = ext_mul(nf, aI,c1);
    2713      133383 :   return gerepilecopy(av, mkvec2(I, aI));
    2714             : }
    2715             : 
    2716             : /* I integral ZM (not HNF), G ZM, rounded Cholesky form of a weighted
    2717             :  * T2 matrix. Reduce I wrt G */
    2718             : GEN
    2719     1285444 : idealpseudored(GEN I, GEN G)
    2720     1285444 : { return ZM_mul(I, ZM_lll(ZM_mul(G, I), 0.99, LLL_IM)); }
    2721             : 
    2722             : /* Same I, G; m in I with T2(m) small */
    2723             : GEN
    2724      142936 : idealpseudomin(GEN I, GEN G)
    2725             : {
    2726      142936 :   GEN u = ZM_lll(ZM_mul(G, I), 0.99, LLL_IM);
    2727      142936 :   return ZM_ZC_mul(I, gel(u,1));
    2728             : }
    2729             : /* Same I,G; irrational m in I with T2(m) small */
    2730             : GEN
    2731           0 : idealpseudomin_nonscalar(GEN I, GEN G)
    2732             : {
    2733           0 :   GEN u = ZM_lll(ZM_mul(G, I), 0.99, LLL_IM);
    2734           0 :   GEN m = ZM_ZC_mul(I, gel(u,1));
    2735           0 :   if (ZV_isscalar(m) && lg(u) > 2) m = ZM_ZC_mul(I, gel(u,2));
    2736           0 :   return m;
    2737             : }
    2738             : /* Same I,G; t_VEC of irrational m in I with T2(m) small */
    2739             : GEN
    2740     1204361 : idealpseudominvec(GEN I, GEN G)
    2741             : {
    2742     1204361 :   long i, j, k, n = lg(I)-1;
    2743     1204361 :   GEN x, L, b = idealpseudored(I, G);
    2744     1204359 :   L = cgetg(1 + (n*(n+1))/2, t_VEC);
    2745     4257288 :   for (i = k = 1; i <= n; i++)
    2746             :   {
    2747     3052926 :     x = gel(b,i);
    2748     3052926 :     if (!ZV_isscalar(x)) gel(L,k++) = x;
    2749             :   }
    2750     3052930 :   for (i = 2; i <= n; i++)
    2751             :   {
    2752     1848570 :     long J = minss(i, 4);
    2753     4592271 :     for (j = 1; j < J; j++)
    2754             :     {
    2755     2743703 :       x = ZC_add(gel(b,i),gel(b,j));
    2756     2743701 :       if (!ZV_isscalar(x)) gel(L,k++) = x;
    2757             :     }
    2758             :   }
    2759     1204360 :   setlg(L,k); return L;
    2760             : }
    2761             : 
    2762             : GEN
    2763       13808 : idealred_elt(GEN nf, GEN I)
    2764             : {
    2765       13808 :   pari_sp av = avma;
    2766       13808 :   GEN u = idealpseudomin(I, nf_get_roundG(nf));
    2767       13807 :   return gerepileupto(av, u);
    2768             : }
    2769             : 
    2770             : GEN
    2771           7 : idealmin(GEN nf, GEN x, GEN vdir)
    2772             : {
    2773           7 :   pari_sp av = avma;
    2774             :   GEN y, dx;
    2775           7 :   nf = checknf(nf);
    2776           7 :   switch( idealtyp(&x, NULL) )
    2777             :   {
    2778           0 :     case id_PRINCIPAL: return gcopy(x);
    2779           0 :     case id_PRIME: x = pr_hnf(nf,x); break;
    2780           7 :     case id_MAT: if (lg(x) == 1) return gen_0;
    2781             :   }
    2782           7 :   x = Q_remove_denom(x, &dx);
    2783           7 :   y = idealpseudomin(x, nf_get_Gtwist(nf,vdir));
    2784           7 :   if (dx) y = RgC_Rg_div(y, dx);
    2785           7 :   return gerepileupto(av, y);
    2786             : }
    2787             : 
    2788             : /*******************************************************************/
    2789             : /*                                                                 */
    2790             : /*                   APPROXIMATION THEOREM                         */
    2791             : /*                                                                 */
    2792             : /*******************************************************************/
    2793             : /* a = ppi(a,b) ppo(a,b), where ppi regroups primes common to a and b
    2794             :  * and ppo(a,b) = Z_ppo(a,b) */
    2795             : /* return gcd(a,b),ppi(a,b),ppo(a,b) */
    2796             : GEN
    2797      532903 : Z_ppio(GEN a, GEN b)
    2798             : {
    2799      532903 :   GEN x, y, d = gcdii(a,b);
    2800      532903 :   if (is_pm1(d)) return mkvec3(gen_1, gen_1, a);
    2801      413168 :   x = d; y = diviiexact(a,d);
    2802             :   for(;;)
    2803       68481 :   {
    2804      481649 :     GEN g = gcdii(x,y);
    2805      481649 :     if (is_pm1(g)) return mkvec3(d, x, y);
    2806       68481 :     x = mulii(x,g); y = diviiexact(y,g);
    2807             :   }
    2808             : }
    2809             : /* a = ppg(a,b)pple(a,b), where ppg regroups primes such that v(a) > v(b)
    2810             :  * and pple all others */
    2811             : /* return gcd(a,b),ppg(a,b),pple(a,b) */
    2812             : GEN
    2813           0 : Z_ppgle(GEN a, GEN b)
    2814             : {
    2815           0 :   GEN x, y, g, d = gcdii(a,b);
    2816           0 :   if (equalii(a, d)) return mkvec3(a, gen_1, a);
    2817           0 :   x = diviiexact(a,d); y = d;
    2818             :   for(;;)
    2819             :   {
    2820           0 :     g = gcdii(x,y);
    2821           0 :     if (is_pm1(g)) return mkvec3(d, x, y);
    2822           0 :     x = mulii(x,g); y = diviiexact(y,g);
    2823             :   }
    2824             : }
    2825             : static void
    2826           0 : Z_dcba_rec(GEN L, GEN a, GEN b)
    2827             : {
    2828             :   GEN x, r, v, g, h, c, c0;
    2829             :   long n;
    2830           0 :   if (is_pm1(b)) {
    2831           0 :     if (!is_pm1(a)) vectrunc_append(L, a);
    2832           0 :     return;
    2833             :   }
    2834           0 :   v = Z_ppio(a,b);
    2835           0 :   a = gel(v,2);
    2836           0 :   r = gel(v,3);
    2837           0 :   if (!is_pm1(r)) vectrunc_append(L, r);
    2838           0 :   v = Z_ppgle(a,b);
    2839           0 :   g = gel(v,1);
    2840           0 :   h = gel(v,2);
    2841           0 :   x = c0 = gel(v,3);
    2842           0 :   for (n = 1; !is_pm1(h); n++)
    2843             :   {
    2844             :     GEN d, y;
    2845             :     long i;
    2846           0 :     v = Z_ppgle(h,sqri(g));
    2847           0 :     g = gel(v,1);
    2848           0 :     h = gel(v,2);
    2849           0 :     c = gel(v,3); if (is_pm1(c)) continue;
    2850           0 :     d = gcdii(c,b);
    2851           0 :     x = mulii(x,d);
    2852           0 :     y = d; for (i=1; i < n; i++) y = sqri(y);
    2853           0 :     Z_dcba_rec(L, diviiexact(c,y), d);
    2854             :   }
    2855           0 :   Z_dcba_rec(L,diviiexact(b,x), c0);
    2856             : }
    2857             : static GEN
    2858     3766434 : Z_cba_rec(GEN L, GEN a, GEN b)
    2859             : {
    2860             :   GEN g;
    2861             :   /* a few naive steps before switching to dcba */
    2862     3766434 :   if (lg(L) > 10) { Z_dcba_rec(L, a, b); return veclast(L); }
    2863     3766434 :   if (is_pm1(a)) return b;
    2864     2243787 :   g = gcdii(a,b);
    2865     2243787 :   if (is_pm1(g)) { vectrunc_append(L, a); return b; }
    2866     1676717 :   a = diviiexact(a,g);
    2867     1676717 :   b = diviiexact(b,g);
    2868     1676717 :   return Z_cba_rec(L, Z_cba_rec(L, a, g), b);
    2869             : }
    2870             : GEN
    2871      413000 : Z_cba(GEN a, GEN b)
    2872             : {
    2873      413000 :   GEN L = vectrunc_init(expi(a) + expi(b) + 2);
    2874      413000 :   GEN t = Z_cba_rec(L, a, b);
    2875      413000 :   if (!is_pm1(t)) vectrunc_append(L, t);
    2876      413000 :   return L;
    2877             : }
    2878             : /* P = coprime base, extend it by b; TODO: quadratic for now */
    2879             : GEN
    2880          49 : ZV_cba_extend(GEN P, GEN b)
    2881             : {
    2882          49 :   long i, l = lg(P);
    2883          49 :   GEN w = cgetg(l+1, t_VEC);
    2884         175 :   for (i = 1; i < l; i++)
    2885             :   {
    2886         126 :     GEN v = Z_cba(gel(P,i), b);
    2887         126 :     long nv = lg(v)-1;
    2888         126 :     gel(w,i) = vecslice(v, 1, nv-1); /* those divide P[i] but not b */
    2889         126 :     b = gel(v,nv);
    2890             :   }
    2891          49 :   gel(w,l) = b; return shallowconcat1(w);
    2892             : }
    2893             : GEN
    2894          28 : ZV_cba(GEN v)
    2895             : {
    2896          28 :   long i, l = lg(v);
    2897             :   GEN P;
    2898          28 :   if (l <= 2) return v;
    2899          14 :   P = Z_cba(gel(v,1), gel(v,2));
    2900          42 :   for (i = 3; i < l; i++) P = ZV_cba_extend(P, gel(v,i));
    2901          14 :   return P;
    2902             : }
    2903             : 
    2904             : /* write x = x1 x2, x2 maximal s.t. (x2,f) = 1, return x2 */
    2905             : GEN
    2906    18157052 : Z_ppo(GEN x, GEN f)
    2907             : {
    2908    18157052 :   (void)Z_pvalrem(x, f, &x);
    2909             :   for (;;)
    2910             :   {
    2911    55783274 :     f = gcdii(x, f); if (is_pm1(f)) break;
    2912    37626682 :     x = diviiexact(x, f);
    2913             :   }
    2914    18156672 :   return x;
    2915             : }
    2916             : /* write x = x1 x2, x2 maximal s.t. (x2,f) = 1, return x2 */
    2917             : ulong
    2918    70355836 : u_ppo(ulong x, ulong f)
    2919             : {
    2920             :   for (;;)
    2921             :   {
    2922    70355836 :     f = ugcd(x, f); if (f == 1) break;
    2923    16136674 :     x /= f;
    2924             :   }
    2925    54219119 :   return x;
    2926             : }
    2927             : 
    2928             : /* result known to be representable as an ulong */
    2929             : static ulong
    2930     1587873 : lcmuu(ulong a, ulong b) { ulong d = ugcd(a,b); return (a/d) * b; }
    2931             : 
    2932             : /* assume 0 < x < N; return u in (Z/NZ)^* such that u x = gcd(x,N) (mod N);
    2933             :  * set *pd = gcd(x,N) */
    2934             : ulong
    2935     5711315 : Fl_invgen(ulong x, ulong N, ulong *pd)
    2936             : {
    2937             :   ulong d, d0, e, v, v1;
    2938             :   long s;
    2939     5711315 :   *pd = d = xgcduu(N, x, 0, &v, &v1, &s);
    2940     5712203 :   if (s > 0) v = N - v;
    2941     5712203 :   if (d == 1) return v;
    2942             :   /* vx = gcd(x,N) (mod N), v coprime to N/d but need not be coprime to N */
    2943     2681049 :   e = N / d;
    2944     2681049 :   d0 = u_ppo(d, e); /* d = d0 d1, d0 coprime to N/d, rad(d1) | N/d */
    2945     2681196 :   if (d0 == 1) return v;
    2946     1587811 :   e = lcmuu(e, d / d0);
    2947     1587863 :   return u_chinese_coprime(v, 1, e, d0, e*d0);
    2948             : }
    2949             : 
    2950             : /* x t_INT, f ideal. Write x = x1 x2, sqf(x1) | f, (x2,f) = 1. Return x2 */
    2951             : static GEN
    2952         126 : nf_coprime_part(GEN nf, GEN x, GEN listpr)
    2953             : {
    2954         126 :   long v, j, lp = lg(listpr), N = nf_get_degree(nf);
    2955             :   GEN x1, x2, ex;
    2956             : 
    2957             : #if 0 /*1) via many gcds. Expensive ! */
    2958             :   GEN f = idealprodprime(nf, listpr);
    2959             :   f = ZM_hnfmodid(f, x); /* first gcd is less expensive since x in Z */
    2960             :   x = scalarmat(x, N);
    2961             :   for (;;)
    2962             :   {
    2963             :     if (gequal1(gcoeff(f,1,1))) break;
    2964             :     x = idealdivexact(nf, x, f);
    2965             :     f = ZM_hnfmodid(shallowconcat(f,x), gcoeff(x,1,1)); /* gcd(f,x) */
    2966             :   }
    2967             :   x2 = x;
    2968             : #else /*2) from prime decomposition */
    2969         126 :   x1 = NULL;
    2970         350 :   for (j=1; j<lp; j++)
    2971             :   {
    2972         224 :     GEN pr = gel(listpr,j);
    2973         224 :     v = Z_pval(x, pr_get_p(pr)); if (!v) continue;
    2974             : 
    2975         126 :     ex = muluu(v, pr_get_e(pr)); /* = v_pr(x) > 0 */
    2976         126 :     x1 = x1? idealmulpowprime(nf, x1, pr, ex)
    2977         126 :            : idealpow(nf, pr, ex);
    2978             :   }
    2979         126 :   x = scalarmat(x, N);
    2980         126 :   x2 = x1? idealdivexact(nf, x, x1): x;
    2981             : #endif
    2982         126 :   return x2;
    2983             : }
    2984             : 
    2985             : /* L0 in K^*, assume (L0,f) = 1. Return L integral, L0 = L mod f  */
    2986             : GEN
    2987       10920 : make_integral(GEN nf, GEN L0, GEN f, GEN listpr)
    2988             : {
    2989             :   GEN fZ, t, L, D2, d1, d2, d;
    2990             : 
    2991       10920 :   L = Q_remove_denom(L0, &d);
    2992       10920 :   if (!d) return L0;
    2993             : 
    2994             :   /* L0 = L / d, L integral */
    2995         518 :   fZ = gcoeff(f,1,1);
    2996         518 :   if (typ(L) == t_INT) return Fp_mul(L, Fp_inv(d, fZ), fZ);
    2997             :   /* Kill denom part coprime to fZ */
    2998         126 :   d2 = Z_ppo(d, fZ);
    2999         126 :   t = Fp_inv(d2, fZ); if (!is_pm1(t)) L = ZC_Z_mul(L,t);
    3000         126 :   if (equalii(d, d2)) return L;
    3001             : 
    3002         126 :   d1 = diviiexact(d, d2);
    3003             :   /* L0 = (L / d1) mod f. d1 not coprime to f
    3004             :    * write (d1) = D1 D2, D2 minimal, (D2,f) = 1. */
    3005         126 :   D2 = nf_coprime_part(nf, d1, listpr);
    3006         126 :   t = idealaddtoone_i(nf, D2, f); /* in D2, 1 mod f */
    3007         126 :   L = nfmuli(nf,t,L);
    3008             : 
    3009             :   /* if (L0, f) = 1, then L in D1 ==> in D1 D2 = (d1) */
    3010         126 :   return Q_div_to_int(L, d1); /* exact division */
    3011             : }
    3012             : 
    3013             : /* assume L is a list of prime ideals. Return the product */
    3014             : GEN
    3015         525 : idealprodprime(GEN nf, GEN L)
    3016             : {
    3017         525 :   long l = lg(L), i;
    3018             :   GEN z;
    3019         525 :   if (l == 1) return matid(nf_get_degree(nf));
    3020         525 :   z = pr_hnf(nf, gel(L,1));
    3021         553 :   for (i=2; i<l; i++) z = idealHNF_mul_two(nf,z, gel(L,i));
    3022         525 :   return z;
    3023             : }
    3024             : 
    3025             : /* optimize for the frequent case I = nfhnf()[2]: lots of them are 1 */
    3026             : GEN
    3027         826 : idealprod(GEN nf, GEN I)
    3028             : {
    3029         826 :   long i, l = lg(I);
    3030             :   GEN z;
    3031        1974 :   for (i = 1; i < l; i++)
    3032        1967 :     if (!equali1(gel(I,i))) break;
    3033         826 :   if (i == l) return gen_1;
    3034         819 :   z = gel(I,i);
    3035        1617 :   for (i++; i<l; i++) z = idealmul(nf, z, gel(I,i));
    3036         819 :   return z;
    3037             : }
    3038             : 
    3039             : /* v_pr(idealprod(nf,I)) */
    3040             : long
    3041        1819 : idealprodval(GEN nf, GEN I, GEN pr)
    3042             : {
    3043        1819 :   long i, l = lg(I), v = 0;
    3044       10056 :   for (i = 1; i < l; i++)
    3045        8237 :     if (!equali1(gel(I,i))) v += idealval(nf, gel(I,i), pr);
    3046        1819 :   return v;
    3047             : }
    3048             : 
    3049             : /* assume L is a list of prime ideals. Return prod L[i]^e[i] */
    3050             : GEN
    3051       61532 : factorbackprime(GEN nf, GEN L, GEN e)
    3052             : {
    3053       61532 :   long l = lg(L), i;
    3054             :   GEN z;
    3055             : 
    3056       61532 :   if (l == 1) return matid(nf_get_degree(nf));
    3057       48099 :   z = idealpow(nf, gel(L,1), gel(e,1));
    3058       79132 :   for (i=2; i<l; i++)
    3059       31033 :     if (signe(gel(e,i))) z = idealmulpowprime(nf,z, gel(L,i),gel(e,i));
    3060       48099 :   return z;
    3061             : }
    3062             : 
    3063             : /* F in Z, divisible exactly by pr.p. Return F-uniformizer for pr, i.e.
    3064             :  * a t in Z_K such that v_pr(t) = 1 and (t, F/pr) = 1 */
    3065             : GEN
    3066       58167 : pr_uniformizer(GEN pr, GEN F)
    3067             : {
    3068       58167 :   GEN p = pr_get_p(pr), t = pr_get_gen(pr);
    3069       58167 :   if (!equalii(F, p))
    3070             :   {
    3071       36717 :     long e = pr_get_e(pr);
    3072       36717 :     GEN u, v, q = (e == 1)? sqri(p): p;
    3073       36717 :     u = mulii(q, Fp_inv(q, diviiexact(F,p))); /* 1 mod F/p, 0 mod q */
    3074       36717 :     v = subui(1UL, u); /* 0 mod F/p, 1 mod q */
    3075       36717 :     if (pr_is_inert(pr))
    3076          28 :       t = addii(mulii(p, v), u);
    3077             :     else
    3078             :     {
    3079       36689 :       t = ZC_Z_mul(t, v);
    3080       36689 :       gel(t,1) = addii(gel(t,1), u); /* return u + vt */
    3081             :     }
    3082             :   }
    3083       58166 :   return t;
    3084             : }
    3085             : /* L = list of prime ideals, return lcm_i (L[i] \cap \ZM) */
    3086             : GEN
    3087       81993 : prV_lcm_capZ(GEN L)
    3088             : {
    3089       81993 :   long i, r = lg(L);
    3090             :   GEN F;
    3091       81993 :   if (r == 1) return gen_1;
    3092       69435 :   F = pr_get_p(gel(L,1));
    3093      122968 :   for (i = 2; i < r; i++)
    3094             :   {
    3095       53533 :     GEN pr = gel(L,i), p = pr_get_p(pr);
    3096       53533 :     if (!dvdii(F, p)) F = mulii(F,p);
    3097             :   }
    3098       69435 :   return F;
    3099             : }
    3100             : /* v vector of prid. Return underlying list of rational primes */
    3101             : GEN
    3102       61075 : prV_primes(GEN v)
    3103             : {
    3104       61075 :   long i, l = lg(v);
    3105       61075 :   GEN w = cgetg(l,t_VEC);
    3106      197589 :   for (i=1; i<l; i++) gel(w,i) = pr_get_p(gel(v,i));
    3107       61075 :   return ZV_sort_uniq(w);
    3108             : }
    3109             : 
    3110             : /* Given a prime ideal factorization with possibly zero or negative
    3111             :  * exponents, gives b such that v_p(b) = v_p(x) for all prime ideals pr | x
    3112             :  * and v_pr(b) >= 0 for all other pr.
    3113             :  * For optimal performance, all [anti-]uniformizers should be precomputed,
    3114             :  * but no support for this yet. If nored, do not reduce result. */
    3115             : static GEN
    3116       54035 : idealapprfact_i(GEN nf, GEN x, int nored)
    3117             : {
    3118       54035 :   GEN d = NULL, z, L, e, e2, F;
    3119             :   long i, r;
    3120       54035 :   int hasden = 0;
    3121             : 
    3122       54035 :   nf = checknf(nf);
    3123       54035 :   L = gel(x,1);
    3124       54035 :   e = gel(x,2);
    3125       54035 :   F = prV_lcm_capZ(L);
    3126       54036 :   z = NULL; r = lg(e);
    3127      136601 :   for (i = 1; i < r; i++)
    3128             :   {
    3129       82565 :     long s = signe(gel(e,i));
    3130             :     GEN pi, q;
    3131       82565 :     if (!s) continue;
    3132       53799 :     if (s < 0) hasden = 1;
    3133       53799 :     pi = pr_uniformizer(gel(L,i), F);
    3134       53798 :     q = nfpow(nf, pi, gel(e,i));
    3135       53799 :     z = z? nfmul(nf, z, q): q;
    3136             :   }
    3137       54036 :   if (!z) return gen_1;
    3138       26915 :   if (hasden) /* denominator */
    3139             :   {
    3140       10097 :     z = Q_remove_denom(z, &d);
    3141       10097 :     d = diviiexact(d, Z_ppo(d, F));
    3142             :   }
    3143       26915 :   if (nored || typ(z) != t_COL) return d? gdiv(z, d): z;
    3144       10097 :   e2 = cgetg(r, t_VEC);
    3145       28663 :   for (i = 1; i < r; i++) gel(e2,i) = addiu(gel(e,i), 1);
    3146       10097 :   x = factorbackprime(nf, L, e2);
    3147       10097 :   if (d) x = RgM_Rg_mul(x, d);
    3148       10097 :   z = ZC_reducemodlll(z, x);
    3149       10097 :   return d? RgC_Rg_div(z,d): z;
    3150             : }
    3151             : 
    3152             : GEN
    3153           0 : idealapprfact(GEN nf, GEN x) {
    3154           0 :   pari_sp av = avma;
    3155           0 :   return gerepileupto(av, idealapprfact_i(nf, x, 0));
    3156             : }
    3157             : GEN
    3158          14 : idealappr(GEN nf, GEN x) {
    3159          14 :   pari_sp av = avma;
    3160          14 :   if (!is_nf_extfactor(x)) x = idealfactor(nf, x);
    3161          14 :   return gerepileupto(av, idealapprfact_i(nf, x, 0));
    3162             : }
    3163             : 
    3164             : /* OBSOLETE */
    3165             : GEN
    3166          14 : idealappr0(GEN nf, GEN x, long fl) { (void)fl; return idealappr(nf, x); }
    3167             : 
    3168             : static GEN
    3169          21 : mat_ideal_two_elt2(GEN nf, GEN x, GEN a)
    3170             : {
    3171          21 :   GEN F = idealfactor(nf,a), P = gel(F,1), E = gel(F,2);
    3172          21 :   long i, r = lg(E);
    3173          84 :   for (i=1; i<r; i++) gel(E,i) = stoi( idealval(nf,x,gel(P,i)) );
    3174          21 :   return idealapprfact_i(nf,F,1);
    3175             : }
    3176             : 
    3177             : static void
    3178          14 : not_in_ideal(GEN a) {
    3179          14 :   pari_err_DOMAIN("idealtwoelt2","element mod ideal", "!=", gen_0, a);
    3180           0 : }
    3181             : /* x integral in HNF, a an 'nf' */
    3182             : static int
    3183          28 : in_ideal(GEN x, GEN a)
    3184             : {
    3185          28 :   switch(typ(a))
    3186             :   {
    3187          14 :     case t_INT: return dvdii(a, gcoeff(x,1,1));
    3188           7 :     case t_COL: return RgV_is_ZV(a) && !!hnf_invimage(x, a);
    3189           7 :     default: return 0;
    3190             :   }
    3191             : }
    3192             : 
    3193             : /* Given an integral ideal x and a in x, gives a b such that
    3194             :  * x = aZ_K + bZ_K using the approximation theorem */
    3195             : GEN
    3196          42 : idealtwoelt2(GEN nf, GEN x, GEN a)
    3197             : {
    3198          42 :   pari_sp av = avma;
    3199             :   GEN cx, b;
    3200             : 
    3201          42 :   nf = checknf(nf);
    3202          42 :   a = nf_to_scalar_or_basis(nf, a);
    3203          42 :   x = idealhnf_shallow(nf,x);
    3204          42 :   if (lg(x) == 1)
    3205             :   {
    3206          14 :     if (!isintzero(a)) not_in_ideal(a);
    3207           7 :     set_avma(av); return gen_0;
    3208             :   }
    3209          28 :   x = Q_primitive_part(x, &cx);
    3210          28 :   if (cx) a = gdiv(a, cx);
    3211          28 :   if (!in_ideal(x, a)) not_in_ideal(a);
    3212          21 :   b = mat_ideal_two_elt2(nf, x, a);
    3213          21 :   if (typ(b) == t_COL)
    3214             :   {
    3215          14 :     GEN mod = idealhnf_principal(nf,a);
    3216          14 :     b = ZC_hnfrem(b,mod);
    3217          14 :     if (ZV_isscalar(b)) b = gel(b,1);
    3218             :   }
    3219             :   else
    3220             :   {
    3221           7 :     GEN aZ = typ(a) == t_COL? Q_denom(zk_inv(nf,a)): a; /* (a) \cap Z */
    3222           7 :     b = centermodii(b, aZ, shifti(aZ,-1));
    3223             :   }
    3224          21 :   b = cx? gmul(b,cx): gcopy(b);
    3225          21 :   return gerepileupto(av, b);
    3226             : }
    3227             : 
    3228             : /* Given 2 integral ideals x and y in nf, returns a beta in nf such that
    3229             :  * beta * x is an integral ideal coprime to y */
    3230             : GEN
    3231       37211 : idealcoprimefact(GEN nf, GEN x, GEN fy)
    3232             : {
    3233       37211 :   GEN L = gel(fy,1), e;
    3234       37211 :   long i, r = lg(L);
    3235             : 
    3236       37211 :   e = cgetg(r, t_COL);
    3237       76069 :   for (i=1; i<r; i++) gel(e,i) = stoi( -idealval(nf,x,gel(L,i)) );
    3238       37210 :   return idealapprfact_i(nf, mkmat2(L,e), 0);
    3239             : }
    3240             : GEN
    3241          84 : idealcoprime(GEN nf, GEN x, GEN y)
    3242             : {
    3243          84 :   pari_sp av = avma;
    3244          84 :   return gerepileupto(av, idealcoprimefact(nf, x, idealfactor(nf,y)));
    3245             : }
    3246             : 
    3247             : GEN
    3248           7 : nfmulmodpr(GEN nf, GEN x, GEN y, GEN modpr)
    3249             : {
    3250           7 :   pari_sp av = avma;
    3251           7 :   GEN z, p, pr = modpr, T;
    3252             : 
    3253           7 :   nf = checknf(nf); modpr = nf_to_Fq_init(nf,&pr,&T,&p);
    3254           0 :   x = nf_to_Fq(nf,x,modpr);
    3255           0 :   y = nf_to_Fq(nf,y,modpr);
    3256           0 :   z = Fq_mul(x,y,T,p);
    3257           0 :   return gerepileupto(av, algtobasis(nf, Fq_to_nf(z,modpr)));
    3258             : }
    3259             : 
    3260             : GEN
    3261           0 : nfdivmodpr(GEN nf, GEN x, GEN y, GEN modpr)
    3262             : {
    3263           0 :   pari_sp av = avma;
    3264           0 :   nf = checknf(nf);
    3265           0 :   return gerepileupto(av, nfreducemodpr(nf, nfdiv(nf,x,y), modpr));
    3266             : }
    3267             : 
    3268             : GEN
    3269           0 : nfpowmodpr(GEN nf, GEN x, GEN k, GEN modpr)
    3270             : {
    3271           0 :   pari_sp av=avma;
    3272           0 :   GEN z, T, p, pr = modpr;
    3273             : 
    3274           0 :   nf = checknf(nf); modpr = nf_to_Fq_init(nf,&pr,&T,&p);
    3275           0 :   z = nf_to_Fq(nf,x,modpr);
    3276           0 :   z = Fq_pow(z,k,T,p);
    3277           0 :   return gerepileupto(av, algtobasis(nf, Fq_to_nf(z,modpr)));
    3278             : }
    3279             : 
    3280             : GEN
    3281           0 : nfkermodpr(GEN nf, GEN x, GEN modpr)
    3282             : {
    3283           0 :   pari_sp av = avma;
    3284           0 :   GEN T, p, pr = modpr;
    3285             : 
    3286           0 :   nf = checknf(nf); modpr = nf_to_Fq_init(nf, &pr,&T,&p);
    3287           0 :   if (typ(x)!=t_MAT) pari_err_TYPE("nfkermodpr",x);
    3288           0 :   x = nfM_to_FqM(x, nf, modpr);
    3289           0 :   return gerepilecopy(av, FqM_to_nfM(FqM_ker(x,T,p), modpr));
    3290             : }
    3291             : 
    3292             : GEN
    3293           0 : nfsolvemodpr(GEN nf, GEN a, GEN b, GEN pr)
    3294             : {
    3295           0 :   const char *f = "nfsolvemodpr";
    3296           0 :   pari_sp av = avma;
    3297             :   GEN T, p, modpr;
    3298             : 
    3299           0 :   nf = checknf(nf);
    3300           0 :   modpr = nf_to_Fq_init(nf, &pr,&T,&p);
    3301           0 :   if (typ(a)!=t_MAT) pari_err_TYPE(f,a);
    3302           0 :   a = nfM_to_FqM(a, nf, modpr);
    3303           0 :   switch(typ(b))
    3304             :   {
    3305           0 :     case t_MAT:
    3306           0 :       b = nfM_to_FqM(b, nf, modpr);
    3307           0 :       b = FqM_gauss(a,b,T,p);
    3308           0 :       if (!b) pari_err_INV(f,a);
    3309           0 :       a = FqM_to_nfM(b, modpr);
    3310           0 :       break;
    3311           0 :     case t_COL:
    3312           0 :       b = nfV_to_FqV(b, nf, modpr);
    3313           0 :       b = FqM_FqC_gauss(a,b,T,p);
    3314           0 :       if (!b) pari_err_INV(f,a);
    3315           0 :       a = FqV_to_nfV(b, modpr);
    3316           0 :       break;
    3317           0 :     default: pari_err_TYPE(f,b);
    3318             :   }
    3319           0 :   return gerepilecopy(av, a);
    3320             : }

Generated by: LCOV version 1.16