Roland Dreier on Thu, 1 Oct 1998 08:05:08 -0500 (CDT) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Problem computing in an extension of Q_p |
While following Bjorn's advice on computing in extensions of Q_p, I came across the following behavior of gp, which I don't understand (apologies for the size of the example, I haven't been able to find a smaller example). I make an element of such a ring, and try to invert it. gp fails to find the reciprocal, even though one exists. Is this a bug? Thanks, Roland (In the example, a is the element gp thinks is not invertible, and b is its inverse; also, lines are wrapped by me, not by gp). GP/PARI CALCULATOR Version 2.0.11 (beta) i586 running linux (ix86 kernel) 32-bit version (readline enabled, extended help available) Copyright (C) 1989-1998 by C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier. Send bug reports, suggestions and patches to pari@math.u-bordeaux.fr Type ? for help. realprecision = 28 significant digits seriesprecision = 16 significant terms format = g0.28 parisize = 20000000, primelimit = 500000, buffersize = 30000 ? a=Mod(Mod(250, 625)*s20^20 + Mod(300, 625)*s20^19 + Mod(600, 625)*s20^18 + Mod(350, 625)*s20^17 + Mod(100, 625)*s20^16 + Mod(400, 625)*s20^15 + Mod(50, 625)*s20^14 + Mod(600, 625)*s20^13 + Mod(15, 625)*s20^12 + Mod(185, 625)*s20^11 + Mod(615, 625)*s20^10 + Mod(170, 625)*s20^9 + Mod(185, 625)*s20^8 + Mod(340, 625)*s20^7 + Mod(200, 625)*s20^6 + Mod(120, 625)*s20^5 + Mod(190, 625)*s20^4 + Mod(145, 625)*s20^3 + Mod(170, 625)*s20^2 + Mod(185, 625)*s20 + Mod(36, 625), Mod(1, 625)*s20^21 + Mod(1, 625)*s20^19 + Mod(1, 625)*s20^18 + Mod(3, 625)*s20^17 + Mod(2, 625)*s20^16 + Mod(4, 625)*s20^15 + Mod(2, 625)*s20^14 + Mod(3, 625)*s20^12 + Mod(3, 625)*s20^10 + Mod(3, 625)*s20^9 + Mod(4, 625)*s20^8 + Mod(3, 625)*s20^6 + Mod(4, 625)*s20^5 + Mod(1, 625)*s20^3 + Mod(2, 625)) %1 = Mod(Mod(250, 625)*s20^20 + Mod(300, 625)*s20^19 + Mod(600, 625)*s20^18 + Mod(350, 625)*s20^17 + Mod(100, 625)*s20^16 + Mod(400, 625)*s20^15 + Mod(50, 625)*s20^14 + Mod(600, 625)*s20^13 + Mod(15, 625)*s20^12 + Mod(185, 625)*s20^11 + Mod(615, 625)*s20^10 + Mod(170, 625)*s20^9 + Mod(185, 625)*s20^8 + Mod(340, 625)*s20^7 + Mod(200, 625)*s20^6 + Mod(120, 625)*s20^5 + Mod(190, 625)*s20^4 + Mod(145, 625)*s20^3 + Mod(170, 625)*s20^2 + Mod(185, 625)*s20 + Mod(36, 625), Mod(1, 625)*s20^21 + Mod(1, 625)*s20^19 + Mod(1, 625)*s20^18 + Mod(3, 625)*s20^17 + Mod(2, 625)*s20^16 + Mod(4, 625)*s20^15 + Mod(2, 625)*s20^14 + Mod(3, 625)*s20^12 + Mod(3, 625)*s20^10 + Mod(3, 625)*s20^9 + Mod(4, 625)*s20^8 + Mod(3, 625)*s20^6 + Mod(4, 625)*s20^5 + Mod(1, 625)*s20^3 + Mod(2, 625)) ? 1/a *** non-invertible polynomial in polinvmod. ? b=subst(Pol(1/(1-x)+O(x^4)),x,1-a) %2 = Mod(Mod(375, 625)*s20^20 + Mod(150, 625)*s20^19 + Mod(175, 625)*s20^18 + Mod(50, 625)*s20^17 + Mod(50, 625)*s20^16 + Mod(325, 625)*s20^15 + Mod(150, 625)*s20^14 + Mod(425, 625)*s20^13 + Mod(460, 625)*s20^12 + Mod(315, 625)*s20^11 + Mod(435, 625)*s20^10 + Mod(30, 625)*s20^9 + Mod(40, 625)*s20^8 + Mod(560, 625)*s20^7 + Mod(50, 625)*s20^6 + Mod(205, 625)*s20^5 + Mod(210, 625)*s20^4 + Mod(205, 625)*s20^3 + Mod(105, 625)*s20^2 + Mod(615, 625)*s20 + Mod(66, 625), Mod(1, 625)*s20^21 + Mod(1, 625)*s20^19 + Mod(1, 625)*s20^18 + Mod(3, 625)*s20^17 + Mod(2, 625)*s20^16 + Mod(4, 625)*s20^15 + Mod(2, 625)*s20^14 + Mod(3, 625)*s20^12 + Mod(3, 625)*s20^10 + Mod(3, 625)*s20^9 + Mod(4, 625)*s20^8 + Mod(3, 625)*s20^6 + Mod(4, 625)*s20^5 + Mod(1, 625)*s20^3 + Mod(2, 625)) ? a*b %3 = Mod(Mod(1, 625), Mod(1, 625)*s20^21 + Mod(1, 625)*s20^19 + Mod(1, 625)*s20^18 + Mod(3, 625)*s20^17 + Mod(2, 625)*s20^16 + Mod(4, 625)*s20^15 + Mod(2, 625)*s20^14 + Mod(3, 625)*s20^12 + Mod(3, 625)*s20^10 + Mod(3, 625)*s20^9 + Mod(4, 625)*s20^8 + Mod(3, 625)*s20^6 + Mod(4, 625)*s20^5 + Mod(1, 625)*s20^3 + Mod(2, 625))