Alf van der Poorten on Mon, 7 Sep 1998 14:25:30 +1000 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Pari Bug (elltors) |
My student Xuan Chong Tran has noticed the anomaly --- ? e=[0,0,0,-3601/768,-118151/55296]; ? v=ellinit(e) %2 = [0, 0, 0, -3601/768, -118151/55296, 0, -3601/384, -118151/13824, -12967201/589824, 3601/16, 118151/64, 4625, 46694890801/18944000, [2.3648131003232463559942610477173002322, -0.47916666666666666666666666666666666666, -1.8856464336565796893275943810506335655]~, 1.6806015939329474190939890379476241899, 1.9713908822102882979386345857169752777*I, -0.96395806517810494401053543079449651620, -3.0000749804811519786571547270840069242*I, 3.3131226589074899100884385162462589725] ? p=[-71/48,-5/4]; ? ellorder(v,p) %4 = 6 ? elltors(v) %5 = [2, [2], [[0, 0]]] ? ?elltors elltors(e): torsion subgroup of elliptic curve e: order, structure, generators --- where PARI reports both that a point $p$ on the elliptic curve $e$ has order $6$, and that the torsion subgroup of $e$ has order $2$. It might be interesting for users to check the extent of this strange case of $6$ dividing $2$. ------------------------ Alf vdP, Macquarie University, Sydney alf@mpce.mq.edu.au phone: +61 2 9850 8947 fax: +61 2 9850 8114 home: +61 2 9416 6026 mobile: +61 4 1826 3129 (from MQ: #6335)