| Denis Simon on Thu, 22 Jan 2026 16:45:14 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Computation with two algebraic integers |
De: "Ewan Delanoy" <ewan.delanoy@zoho.com>
À: "pari-users" <pari-users@pari.math.u-bordeaux.fr>
Envoyé: Jeudi 22 Janvier 2026 16:24:57
Objet: Re: Computation with two algebraic integers
> Maybe provide a small example as a tested for experiment.
On a small example one can proceed as follows :minpoly_for_h=h^6 - 3*h^4 + 3*h^2 - 3minpoly_for_g=g^3-2relator=(15*h^4 - 18*h^2 - 15)*g^2 + (6*h^5 - 12*h^3 + 18*h^2 - 30*h - 30)*g + (36*h^3 - 18*h^2 - 48*h - 6)polrem(pol1,pol2,var)=divrem(pol1,pol2,var)[2]relator_lead_inverse=lift(Mod(1/pollead(relator,g),minpoly_for_h))relator2=polrem(relator_lead_inverse*relator,minpoly_for_h,h)relator3=polrem(minpoly_for_g,relator2,g)relator4=polrem(relator3,minpoly_for_h,h)g_in_terms_of_h=lift(Mod(-polcoeff(relator4,0,g)/polcoeff(relator4,1,g),minpoly_for_h))
Cheers,Ewan