Bill Allombert on Tue, 27 May 2025 00:40:59 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to determine Mod(a,b) with t_COMPLEX b?
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: How to determine Mod(a,b) with t_COMPLEX b?
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 27 May 2025 00:40:52 +0200
- Delivery-date: Tue, 27 May 2025 00:40:59 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1748299256; bh=vuNLLKpSc5akL+jsFW8kfb6fbXpvZrHdg6NCUua6mL4=; h=Date:From:To:Subject:References:In-Reply-To:From; b=NJr3mA0MECPF+fSrW/c8j5Apov+72uHvP4VRt/GejFk4MmzMpMNetmTF04dSaOswW W93/QAye2vAeRztpkxbOh1P6BAqzLL1qdoz8+IW+N0WpYf+p0kSeR8r25o34BiDc7m fI/xEq80qPzF+Nsm/TGfrm1kZQsuTzbqiy+2q2PkLCVImh5Moh5Q4JH3atnp6nIBmh BrWjIaExSVM8sMRK2Tc3o1pXmtPLxfgcDL5FLxzI42fUwZNCGQTpOmCNxvk1EUjFX7 jJsiOd9Snz4j0gpOUAfM/wldycp0Tp0k6JiYXcy6PNPi6KjQj3zS134zPDMIDhHlH6 MgU2pZjeGJlMCjzZlfoKR1iMWIw0eZvoOwugbb2XR44aKciGFsQTv9hLcjItHjb6hF 8K1pvBRM2Lg696aH/Vz8HhhBTexZOu4tMW1rcByfgRYV/pH0vkUSKXAvEE5tq0rKJ2 US0VAfFvmJ6eELX9tP+mRYLP/7lv8m7p7E6YHUZIYqFWldYCCbi81X1rn5lsRVtRYX tC0SInM8ykX4saUCoyTr6pklDYxUXUeKmScT7yd3xroao60Ji1cXvtkbBElNYptS0D 8SrMtUTgR0juN3v869k/OSFHEVj/rqaXkeVptDVS0dEqpQeMMqCQhv4bMfG/ecrvas 78mOGuXKxLvGVZFZdhOGyiKM=
- In-reply-to: <f121d6b8f9192b26f556ed13a8d49d06@stamm-wilbrandt.de>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <f121d6b8f9192b26f556ed13a8d49d06@stamm-wilbrandt.de>
On Tue, May 27, 2025 at 12:01:44AM +0200, hermann@stamm-wilbrandt.de wrote:
> $ gp -q
> ? a=1+4*I;b=3+2*I;
> ? a/b
> 11/13 + 10/13*I
> ? Mod(a,b)
> *** at top-level: Mod(a,b)
> *** ^--------
> *** Mod: forbidden division t_COMPLEX % t_COMPLEX.
> *** Break loop: type 'break' to go back to GP prompt
> break>
>
>
> The minimal residue of 1+4*I modulo 3+2*I is the yellow point -I in the
> example:
> https://en.wikipedia.org/wiki/Gaussian_integer#Describing_residue_classes
>
> How can minimal residue of an input gaussian integer modulo a gaussian
> integer be computed in PARI/GP?
nf=nfinit(i^2+1)
a=1+4*i;b=3+2*i;
nfeltdivrem(nf,a,b)
%4 = [[1,1]~,[0,-1]~]
Cheers,
Bill.