Bill Allombert on Wed, 29 May 2024 09:42:00 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Regarding computing an eta product
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Regarding computing an eta product
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 29 May 2024 09:41:27 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1716968489; c=relaxed/relaxed; bh=EK6+oo29VR6BxLc8XGmSfnH/viwV9N6Kohoh2y3JWms=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=QFliMyzNPnBEeXjnr3N6zIkevneihYz5+yj/4s6WTtTV8YI8Di4sJUlSL4qW79CImmHt0TnipNhY3QV9PLI6sEOwWU2b20ZPVEhHzYBL4AdoUvWyH03CS3S9n+8guiYZuRGLhIodbCZnU12O9rje0/LJpAqXE/fAH5YGvuFR1SvwEvN6Iu9AhCqSuRBVvxKh8gs3XWNl5Z2oq7lSxFvX4PpcMpjEOI3eIN2ojQa6/3/tQrYnqDfgFNpk/CiuaFEXqzeV6qPf+A8eBPyQQ3qFCTCcDkCUdfEceo4cHgrwF0kdBetIQPHBh93cO9mkhHty2dPfMHPIjilQYpSFTdFCNJfkIQ81rWp4YdCNHpAZnWn5Q/UJOBq3q//YCYLOnUTNoJJShmoQ0Ff6gz86LYsC5npWOoW/nvQnEFgUyhbxkgAcpOrBBB9H9KdGovq6COjlw0tUtUfaxwvoYshQJXN+hycIBzZuk9m6QwCXQaBfihhPpV1UZd1qo3/8tTbypMze63M9T+0dHUiFDN5YI4b//pSKZEV6KH11WI62VggY+xB1jD58ZfClizvZhKf9hztX44FDLRt4W2f9gTPtRdm1Anib8xFbdAwb32uSAVAJre9ciYx981bYEpdACIad6JWJdxmrInkr83xiEdV4nOeexZENG+LjIjJlM5T4BjLLHa8=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1716968489; cv=none; b=E9xVqriNw6+SfZ33BoyuPYVLRVkbjfk5IfcHaeufZTHFiQraM3qsa+8utDsFFof8irRfXkdL6Hc2oJSrX/Ts2LKXjH7PzgPI1AClDaFIkT38ZHMzfICofcqcrL3Jyp9x5MA0rkSE8tCAqG0TAmq890eF7EElE6KZQRoDnlVY+FAZuWjsIm0Tc4asxNFARBdYQUeM9XIKw6pk5fU8ACkrSgw9gnalxLgrwanWJBz74JJ5QvjvgXeX5aNRwjwhgFvJzQx0LbGCwNqwNkwVKbiuZg9vS8NPUnKj5mIHYPuBXHq+7m3hjAf/csE+QmTeiVbQKvm1ORZk6QtAmwmoUhSW5WVzygK+txbqPUK4zedePE1EEfr/SSJD1SVtA3/ccnQyoJU5HBEGb3dpGxgH+5gzzMsbAOaCgHYGPTgk8IEuWjlie/GmycwDeWb6oo2oG/AT5O2LWAicWnP5huexBsvQ5RYM17dDpBZSsVo9+5oLnVdSLu/Zo5paLD43Hwgly8wKVe1Js2g7LKyQ+7krvhwu1fcNsB/BB1ImYQyYD1km4L0KCkCzJ27Mhux8cnQpnRJJEW5Mh+R5RuUSXUSPIWavnr039j3LSkWy6kUeDnIWQtUJdu3yrPDvWhxRjOzB5WM6Oz1783V8Q8hD7w9IW9pc8TipDmORBtJJ7isFlbBSt2I=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 29 May 2024 09:42:00 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1716968489; bh=EK6+oo29VR6BxLc8XGmSfnH/viwV9N6Kohoh2y3JWms=; h=Date:From:To:Subject:References:In-Reply-To:From; b=VlGGJeO1+XtZjcbVGeQSqd9EDLtdA7nVNehbJEIwxL3q2z/VzQkK7NgYgSXW7FOmb LgzxWSzoVvtKQseGwgL6X7yLaOFissAj0mUHi9ksygXCo/wtwAaGa52uKWP2Pmzuc0 toD/tu2nOxZWfJhLbz0WTkDsJd6XaHWg7XEGXoFOdxGpklEuYXASNxkvDvnGaEst3b RPS+i91gsSno/d3vZSbL3H28B2CWHEDWRSlRlz5albNZRFcUWMy9cZu5RL6hdAS9gs BjwBPD28VVy6dPgyza/0xUE6AvNUW8dllegVU971OkP0dZD55ltUgCWxRTBhzTEiqt Pikl/EizXJ37dc2D2jTLMEOQqC++a+/lK2JLRoPvmQTfwjMg0HAQp0NE3xsss8zMeD pQ829IZq8meP3fZMS8li/6q8d0Gf+GGNQaIF+dnmIk2hywbT3LMS/NP+ECpjnxP6Ch Nq+b1W8raJbj35SqJdSG2HxZ2aSYu6Ia7vtPBoFML0wfBSqOVSIR9BzuDZlSzpHUZ0 kPFlGT7SYC3zRFOOkqucopBqg3vlLexAiiAp5XQwaejhDkykgMoHLWfaMtdskswXKp nmYABv9owioYT2+qi4IPN5Do4eEDK/DxvAntRa6zj0551/rtyMUuC2UonZejVtEx+w XeZJWI9bqQylhXgvRm6Nke78=
- In-reply-to: <SJ0PR19MB4762FC811C2CA33BDCDD5B1A80F22@SJ0PR19MB4762.namprd19.prod.outlook.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <SJ0PR19MB4762FC811C2CA33BDCDD5B1A80F22@SJ0PR19MB4762.namprd19.prod.outlook.com>
On Wed, May 29, 2024 at 03:11:11AM +0000, LNU, Swati wrote:
> Hello all,
> Is it possible to modify the function
> q^(a) * (eta (Mod(1, m) * q + O(q^(n + 1))))^(24 * a),
> which computes the series expansion of various powers of Ramanujan Delta function and reduces coefficients modulo m, to compute the expansion of various powers of
> the following eta product and reduce coefficients mod m:
> (\eta(z) \eta(3z) \eta(5z) \eta(15 z))^(a).
> I tried changing q -> q^(ka) and flag to a non-zero value for the individual products, but it does not seem to work. Here, k \in {1, 3, 5, 15 \} and a is any positive integer.
You need not change the flag.
GP eta is missing a factor q^(1/24z) so you have to multiply by it to compensate.
but
q^(1/24*z) q^(3/24*z) q^(5/24*z) q^(15/24*z) = q^z
so that just means multiplying by q.
So you can do this:
etak(k)=eta (Mod(1, m) * q^k + O(q^(n + 1)));
q^(a) * (etak(1)*etak(3)*etak(5)*etak(15))^a
Cheers,
Bill