Bill Allombert on Tue, 16 Apr 2024 23:50:33 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Game: find the curve
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 16 Apr 2024 23:50:29 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1713304230; c=relaxed/relaxed; bh=8iyHrL976+r6M7To3sWh/TObZGoyLNhGMYhngMpI/lo=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=FrWz0YIh2PFcVWnSn1cLC1L7slI3h6P5QRCShou8PKH8ytWRbJ9zZ2lSsEC7kXXjfk1QfBG4LUAXHpmjgPoyuyojd4FVq2dVT9mUoSA+FWtDA6EMd5CiLVlOejKAzKZ2JVPz+6wy5wgvUaCeMyGKXPFBrhHKvqoIfX+keGI02aoo4vzLR/pDyBUj0koth39R3PWMXcQRi7Wr53x2dh6zfbJvXtucgWsysCdGS9JlDIZyw+iznLMDe4+wesNuACTk+VDfwThI3G72qrmx8hZdhZswtw1Bpfynxw7iQc8RMFXWzLg4sl6COapSA0dp78DWaAPxYrYnLpJzwUWEhEOD0fxbH4NBiqok1Qa9M5AVWieDSPDPCUK14kgri/Nc5AT7Eoqw0Ea55Ew/CaGznoEX5qlDDfrf+4BYnheO8iAocSkx7QGMn4bMoED7oJir8e/8y1IKqeotIVjQh4OfDDIPM7ThN/XuuX+0sixMgv8PsY7H7DGVJ9B2Asix7alay+10GGs8KNNmjVm62hbrJqIP4KPEPSNxtTLFynAhfqnjf4Baw7w0lMp/VjjD9kZCe8Gw+5abHw/AHVcqrlQVTe5ZfrUqsecOF1auW/R3JB1LWj9mLyHR4fXzp12xnq2OK5oUf957mG7cQcXC74HMJAXUIM9h42HDkLrxqk6stfhW8Xk=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1713304230; cv=none; b=26rxnwlnGjPo9Q2v+Zdh7VsZS7uyVsurGEobvXpcfPR6yWELSG1rv+q85jQPVlnGpWdyy3iqVQ3/LvIAYZL7nU0EcCBR+YWsQB2QjkiUJ0J5z0nQxu6GKHi2DgjDmyzxs78DcKBFabhwA23CcwKRWAYOgva27+dAqkxPNAdhggEyabDjuSZm8+nJxW2DzxgMVqE9E9lco/qHWsOlBVd5zL4mcOSTcd34kPFfHtkeD6skJneLv4ir2oHLGHRc8zSYKu4S7M24TrnnzgUuUfvCGGCYvoo9GQ4rUY4kpSG4vIui39hjCmI/SSJnYn+cVzMyx5WB08BuDcQclNWaFu6UYEd8/JL7PO60XfJg4WxWKWH1n8/mLeeyURutDBns+sLy6e2BD5cjSkM1BKEFgD8PDC+3ys/a3HgT51X9lBhlqxjvkzOi4/R3iepJHQFLBvYPSi8pWgMMUXc+kWtSbXm1qph9zU5Z3AAJXrYrssEGAsPA4lMVQYRYoGR086vvqXFFbOo4G1eV6cGVy8yhokz2/mhoIXDytvEmpf7mxSTK5mjabM2GRuBUnYqTV/TAlfpU/VX/VUBtusMjdjmgblhUR93cWsY/8jKhQDd74Fp+5iOcmELMXlrkakdR1Yr1Irp1VYz+gpaG0zsnGUHb2QtUEfm5wTXrkf6sks5BHL5oRM0=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Tue, 16 Apr 2024 23:50:33 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1713304230; bh=8iyHrL976+r6M7To3sWh/TObZGoyLNhGMYhngMpI/lo=; h=Date:From:To:Subject:References:In-Reply-To:From; b=S2coayCmNIr4HO02aFCVJSYfmRuaMco6vCTgcKu4gg7/jYwyNdDz0H7AKsTmrCXis VsyKySZP6imX5nHNJ/AqbOjXFbqx2cXb1j1e1WB/7WJPi3V4B2WNPmzIAk02uNvUmi SjjoKClV2IdyO1lNJ8i/6ClCfhvDpmxWtUsyNIya5X0wAi2X3AUJpLuiutwWBEGGKU bEnAc//jCEWDFessGKLey5v9qBd2b6ieEChTbc1W20qJb6uG9VZjsi0rLJTEoB8lzS VAv8kbEjw0XkAfItcEcLI6gaj8wxlA1DSbz/59NWCLtzBoM3vg+PCmELYF0VWMAwkz I/B/k2iOFFsPIi/mOBqOJl8s9/z6/Ay82TwUWahVrxVgwJIRnBeAxVhESc3bHvxF97 iOwQasfS2M66TvECaAzZdtXHpmniJxIa2ZTKnLJPGWViZlB+UuUt2+WRjdibvt72n3 oDYzsTsgctJfDjn62un5QGsb9Re2hVUGQmdhiVSQB2Y8DlhG/6Tjrs+HUzV0kJ3LM8 t2HmJNB/Fe2wCydt9TVS0b7pXib+1hG+/ORKN6KjdYH6bZ70r2oXGIuSEJ5R5AT6Oi iczde4uE4yy341ePX8BvDU0T2ePDsj+qxhZhYcu1Q6KYfPpgbuOkC9PEjDYynbQEBB 53WvKp8GYmLLDpLXboLYG1ns=
- In-reply-to: <1535218505.338450.1713275726789.JavaMail.zimbra@unicaen.fr>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <ZhhReJcaDTAhXTJ6@seventeen> <5912aad3-6bda-4e56-9161-dfe8025b0084@gmail.com> <1535218505.338450.1713275726789.JavaMail.zimbra@unicaen.fr>
On Tue, Apr 16, 2024 at 03:55:26PM +0200, Denis Simon wrote:
> Hi Randall,
>
> Call [x,y] the coordinates of your point.
> The question is to find a linear relation between |y^2,x*y,y,x^3,x^2,x,1].
> The function lindep does the job.
Indeed:
? [X,Y]=P;F=lindep([X*Y,-X^2,Y,-X,-1,-X^3,Y^2])~
%1 = [0,-105941,-105941,-112234954810,-23483312417238135,1,1]
? E=ellinit(F[1..5]/F[7]);
? ellisoncurve(E,P)
%3 = 1
? ellglobalred(E)
%4 = [11223495481,[1,35314,0,52971],4,[11,2;9631,2],[[2,-9,0,2],[2,-1,0,2]]]
? ellminimaltwist(E)
%5 = 105941
? Et=elltwist(E,105941);
? ellidentify(Et)
%11 = [["11a1",[0,-1,1,-10,-20],[]],[105941,0,0,594508555628570
So actually the curve is the twist of 11a1 a.k.a X_0(11) by D=105941 = 11*9631.
Its conductor is 11223495481 = 11^2 * 9631^2 which is a bit large for ellheegner.
Cheers,
Bill.